Смекни!
smekni.com

Измерение параметров АЦП (стр. 1 из 5)

Министерство общего и профессионального образования РФ

-------------------------------------------------------------------------------------------------------

Новгородский Государственный Университет

им. Ярослава Мудрого

кафедра ФТТиМ

Контроль параметров АЦП

Реферат по дисциплине:

Испытания изделий электронной техники.

Выполнил:

Студент группы 4031

_______Галинко В.Ю.

«___»_____________1999

Проверил:

Преподаватель каф. ФТТиМ

_______Крутяков.Л.Н.

«___»_____________1999

Новгород

1999


Содержание

Введение

3

1. Основные структуры ИМС АЦП

4

2. Характеристики ИМС АЦП

7

3. Контроль статических параметров ИМС АЦП

13

4. Контроль динамических параметров ИМС АЦП

19

Список использованных источников

23

Введение

Цифро-аналоговые и аналого-цифровые преобразовате­ли АЦП находят .широкое применение в различ­ных областях современной науки и техники. Они являют­ся неотъемлемой составной частью цифровых измери­тельных приборов, систем преобразования и отображе­ния информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиоло­кационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода—вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функ­ций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д. Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несом­ненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию про­никновения метода дискретно-непрерывного преобразо­вания в сферу науки и техники. Одним из стимулов раз­вития цифро-аналоговых и аналого-цифровых преобразо­вателей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характе­ристиками. В настоящее время применяют три вида тех­нологии производства АЦП: модульную, гибрид­ную и полупроводниковую. При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в мо­дульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобра­зователи с достаточно большой рассеиваемой мощно­стью.

В данной главе рассматриваются основные структу­ры, характеристики и методы контроля интегральных микросхем АЦП.

1 Основные структуры ИМС АЦП


Рис. 1. Обобщенная структурная схема АЦП

Обобщенная структурная схема АЦП (рис.1) представляет собой дискретизирующее устройство ДУ, тактирующее работу кванту­ющего КвУ и кодирующего КдУ устройств. На вход квантующего устройства по­ступает преобразуемый сиг­нал x(t), а с выхода кодиру­ющего устройства снимается дискретный сигнал ДС, кото­рый для АЦП в интеграль­ном исполнении обыччно име­ет форму двоичного параллельного кода. В результате равномерного квантования мгновенное значение xi не­прерывной величины x(t) представляется в виде конеч­ного числа п ступеней квантования Δх:

Xi=nΔx=x ±Δk,

где Δk - погрешность квантования, обусловленная тем, что преобразуемая величина х может содержать нецелое число п ступеней квантования Δх.

Максимально возможная погрешность квантования (погрешность дискретности) определяется ступенью квантования, т. е.

Δkmax= Δx

Для известного диапазона xmax максимально возмож­ное число дискретных значений преобразуемого сигнала х (включая х==0)

nmax=(xmax/ Δx+1)

При этом, как правило, погрешность квантования не должна превышать общую погрешность преобразования.

Следовательно, если известно значение допустимой отно­сительной погрешности преобразования γmaх, то при опре­делении ступени квантования необходимо учитывать со­отношение

Δx ≤ (γmaх /100)*xmax

Кроме того, следует учитывать, что АЦП обладают определенным порогом чувствительности Хп.ч, т. е. спо­собностью вызывать изменение выходной информации преобразователя при воздействии на его вход наимень­шего значения преобразуемого сигнала. Поэтому значе­ние Δx должно превышать Хп.ч и удовлетворять неравен­ству

Хп.ч < Δx ≤ (γmaх /100)*xmax

Реализацию обобщенной структуры можно осущест­вить различными способами, которые рассмотрены ниже. Независимо от способа построения АЦП всем им прису­ща методическая погрешность, обусловленная погрешно­стью квантования Δx.

В зависимости от области применения АЦП их основ­ные характеристики (точность, разрешающая способ­ность, быстродействие) могут существенно отличаться. При использовании АЦП в измерительных устройствах главную роль играет точность преобразования, а быстро­действие этих устройств ограничено реальной скоростью регистрации результата измерения. При использовании АЦП в качестве устройства ввода измерительной инфор­мации в ЭВМ от него требуется быстродействие в боль­шей степени.

Широкое применение АЦП в различных областях на­уки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существую­щих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:

1) метод прямого (параллельного) преобразования;

2) метод последовательного приближения (поразряд­ного уравновешивания);

3) метод интегрирования.

Каждый из этих методов позволяет добиться наилуч­ших параметров (быстродействия, разрешающей способ­ности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстре­мальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечис­ленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.

В АЦП с параллельным преобразованием входной сигнал прикладывается одновременно ко входам всех компараторов. В каждом компараторе он сравнивается с опорным сигналом, значение которого эквивалентно определенной кодовой комбинации. Опорный сигнал сни­мается с узлов резистивного делителя, питаемого от ис­точника опорного напряжения. Число возможных кодо­вых комбинаций (а следовательно, число компараторов) равно 2m1, где т—число разрядов АЦП. АЦП прямо­го преобразования обладают самым высоким быстродей­ствием среди других типов АЦП, определяемым быстро­действием компараторов и задержками в логическом де­шифраторе. Недостатком их является необходимость в большом количестве компараторов. Так, для 8-разрядно­го АЦП требуется 255 компараторов. Это затрудняет реализацию многоразрядных (свыше 6—8-го разрядов) АЦП в интегральном исполнении. Кроме того, точность преобразования ограничивается точностью и стабильно­стью каждого компаратора и резистивного делителя. Тем не менее на основе данного принципа строят наиболее быстродействующие АЦП со временем преобразования в пределах десятков и даже единиц наносекунд, но огра­ниченной разрядности (не более шести разрядов).

АЦП последовательного приближения имеет несколь­ко меньшее быстродействие, но существенно большую разрядность (разрешающую способность). В нем исполь­зуется только один компаратор, максимальное число срабатываний которого за один цикл измерения не превы­шает числа разрядов преобразователя. Суть такого ме­тода преобразования заключается в последовательном сравнении входного преобразуемого напряжения Us с выходным напряжением образцового ЦАП, изменяю­щимся по закону последовательного приближения до момента наступления их равенства (с погрешностью дискретности). Входной сигнал Ux с помощью аналогового компаратора КН сравни­вается с выходным сигналом образцового ЦАП, который управляется в свою очередь регистром последовательно­го приближения РгПП. При запуске схемы РгПП уста­навливается генератором Г в исходное состояние. При этом на выходе ЦАП формируется напряжение, соответ­ствующее половине диапазона преобразования, что обес­печивается включением его старшего разряда 100 ... 0. Если Us меньше выходного напряжения ЦАП, то стар­ший разряд выключается, включается второй по стар­шинству разряд (на входе ЦАП код 0100...0), что соот­ветствует 'формированию на выходе ЦАП напряжения, равного половине предыду­щего. В случае если Их пре­вышает это напряжение, то дополнительно включается третий разряд (на входе ЦАП код 0110...0), что при­водит к увеличению выходного напряжения ЦАП в 1,5 раза. При этом выходное напряжение ЦАП вновь сравни­вается с напряжением Ux и т. д. Описанная процедура повторяется т раз (где mчисло разрядов АЦП). В итоге на выходе ЦАП формируется напряжение, отли­чающееся от входного преобразуемого напряжения Ux не более чем на единицу младшего разряда ЦАП. Результат преобразования напряжения Ux в его цифровой эквива­лент—параллельный двоичный код Nx—снимается с выхода РгПП. Очевидно, погрешность преобразования и быстродействие такого устройства определяются в основ­ном параметрами ЦАП (разрешающей способностью, ли­нейностью, быстродействием) и компаратора (порогом чувствительности, быстродействием). Преимуществом рассмотренной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразова­телей сравнительно высокого быстродействия (время 'пре­образования 'порядка нескольких сот наносекунд). На ос­нове метода последовательного приближения реализова­на и серийно выпускается ИМС 12-разрядного АЦП К572ПВ1 с временем преобразования 100 мкс.