Данные методические указания издаются в соответствии с учебным планом. Рассмотрены и одобрены кафедрой ИУ-6 21,12.87г.-методической комиссией факультета ИУ 23.12.87 г. и учебно-мето-дическим управлением 08.01.88 г.
Рецензент к.т.н. доц. Меньков А.В.
Московское высшее техническое училище имена Н.Э.Баумана
Цель лабораторного практикума - изучение режимов работы диодов и транзисторов в электронных схемах, установление связи между параметрами указанных приборов и параметрами электронных схем, в которых они работают.
Содержание
СОДЕРЖАНИЕ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ....................................... 2
Работа №1. ДИОДЫ В ИСТОЧНИКАХ ПИТАНИЯ.................................................... 2
Работа № 2. ТРИ Схемы ВКлючения ТРАНзистора....................................... 8
Работа № 3. ключевой РЕжим РАБОТЫ ТРАНЗИСТОРА................................ 14
Работа №4. УНИПОЛЯРНЫЙ ТРАНЗИСТОР В ШИРОКОПОЛОСНОМ УСИЛИТЕЛЬНОМ КАСКАДЕ С RC –СВЯЗЯМИ................................................................................................... 18
Редактор Н.Г.Ковалевская Корректор Л.И.Малютина
СОДЕРЖАНИЕ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ
Отчеты по проведенным лабораторным работам должны включать:
1. Наименование работы.
2. Чертеж принципиальной схемы макета лабораторной работы.
3. Дня каждого этапа выполняемой работы – наименование этапа и результаты (в форме таблиц, графиков, зарисовок осциллограмм).
4. Краткие выводы по рабе те в целом.
Работа №1. ДИОДЫ В ИСТОЧНИКАХ ПИТАНИЯ
Цель работы - исследование характеристик и параметроввыпрямительныхсхем и стабилизаторов напряжения. Продолжительность работы - 3,5 часа.
Теоретическая часть
Электронные приборы и устройства требуют для своего питания стабильного напряжения постоянного тока. В большинстве практических случаев такое напряжение получают из переменного напряжения сети с помощью вторичных источников питания, включающих выпрямитель сетевого напряжения, сглаживающий фильтр и стабилизатор напряжения (рис. I).Рис.1 Структурная схема вторичного источника питания
В состав выпрямителя обычно входят:
силовой трансформатор, предназначен для получения необходимых величин переменного напряженияиз напряжения сети, а также для гальванической развязки с сетью;
вентильная группа (чаще всего полупроводниковые диоды), преобразующая напряжение переменного тока в пульсирующее напряжение постоянного тока;
емкостная нагрузка вентильной группы, представляющая собой конденсатор относительно большой емкости, который можно также рассматривать как простой емкостный сглаживающий фильтр. Сглаживающий фильтр, подключаемый к выходу выпрямителя, уменьшает пульсации выходного напряжения.
Если к выходному напряжению предъявляются высокие требования по стабильности при колебаниях напряжения сети и тока нагрузки, то в источник питания вводится стабилизатор напряжения.
На рис. 2а представлена схема однополупериодного выпрямителя с полупроводниковым выпрямительным диодом V. Как известно, вольтамперная характеристика (BAX) выпрямительного диода имеет вид, представленный на рис. 3. Для упрощения практических расчетов ее часто представляют на основе кусочно-линейной аппроксимации двумя .участками прямых АВ и ВС , причем АВ идет по оси абсцисс, а наклон ВС определяется средним, прямым сопротивлением диода
. С целью дальнейшего упрощения иногда принимают UgH » 0 и тогда точка В смещается в начало координат. Как следуетиз такой аппроксимация ВАX, диод представляют элементом с односторонней проводимостью, его внутреннее сопротивление на участке ВА стремится к бесконечности, а на участке ВС сравнительно мало.Рис. 2. Схемы выпрямителей: а - однополупериодного, б – двухполупериодного (мостового)
На рис. 4 приведены временные диаграммы напряжений и токов в выпрямителе, работающем на емкостную нагрузку. В интервале времени t2 – t1, соответствующем изменению фазового угла wt2 – wt1, диод открыт и через него протекают токи нагрузки и заряда конденсатора С . Постоянная времени заряда tзар = С(RH ||Rпот), где сопротивление потерь
Rпот = Rпр.ср.+Rтр (Rтр - активное сопротивление потерь трансформатора). Практически всегда Rпот £ RHи tзар @ С(RH ||Rпот. В остальную часть периода диод закрыт. В течение этого времени конденсатор разряжается tразр » С(RH ||Rобр+Rтр)).
Поскольку у правильно выбранных диодов их обратное сопротивление Rобр³Rтр+RH, постоянная времени разряда tразр » СRHи t разр <<tзар-т.е. процессы заряда и разряда конденсатора С идут с разной скоростью. Следовательно, появляется постоянная составляющая напряжения Uc , на диоде обратное напряжение .может достигать величины Uобр=2U2m. Поэтому диод выбирают с Uобр.макс>2U2m. Фазовый угол, в течение которого диод открыт, обозначается 2q=wt2-wt1, где q - угол отсечка. Чем меньше q . тем больше U0 и меньше пульсации. Поэтому q желательно уменьшать.
В установившемся режиме площади под кривыми тока заряда конденсатора Jсз и тока разряда Jcродинаковы. Основные расчетные параметры выпрямителя являются функциями коэффициента
, где m=1 для однополупериодного и m = 2 для двухполупериодного выпрямителей.С помощью этого параметра определяют необходимые значения:
Jm - максимального импульса тока через диод;
J2 - действующего значения тока вторичной обмотки трансформатора;
E2 - действующего значения ЭДС вторичной обмотки.
С помощью коэффициента A(q) при расчетах определяюти коэффициент пульсаций, равный отношению напряжения первой гармоники к постоянной составляющей выпрямленного напряжения U0'
.Выходное сопротивление
, где DU0 и DJ0,находят по нагрузочной характеристике источника U0=f(J0); U0 и J0 - напряжение и ток нагрузки.На рис. 26 приведена схема двухполупериодного мостовоговыпрямителя. Ее особенностью является то, что за период через диоды протекают два импульса тока. В одном полупериоде ток течет через диода V2 и V3 (пунктирные стрелки), в другом – через диоды V1 и V4. Частота пульсаций выше в два раза, а величина их меньше. Обратное напряжение на диодах ниже в две раза Uобр.макс>2U2m по сравнению с однополупериодной схемой. Еще одной особенностью этой схемы является отсутствие в трансформаторе постоянного подмагничивания, так как ток вторичной обмотки в полупериодах протекает в противоположных направлениях.
Для уменьшения пульсации выходного напряжения между выпрямителем и нагрузкой часто включают сглаживающий фильтр. Качество сглаживания определяется коэффициентом сглаживания, равным отношению коэффициента пульсации на входе фильтра к коэффициенту пульсации на его выходе
Например, простой LC -фильтр, представляющий собой последовательно о нагрузкой включенный дроссель и параллельно c нагрузкой включенный конденсатор, существенно уменьшает пульсации, поскольку для постоянной составляющей U0 сопротивление дросселя близко к 0, а конденсатора - к бесконечности, для пульсирующей - наоборот, поэтому постоянная составляющая проходит через фильтр практически без изменений, а пульсирующая существенно уменьшается.
Использование электронного стабилизатора позволяет значительно уменьшить кп, Rвых, а также зависимость U0 от колебаний напряжения сети и тока нагрузки. Качество стабилизации оценивается коэффициентом стабилизации при постоянном токе нагрузки
где DUвых - приращение U0при изменении Uвх на величину DUвх ;
Uвх.ном ; Uвых.ном - номинальные значения напряжений.
Рис. 5. Параметрический стабилизатор (а) и вольт-амперная характеристика стабилитрона (б)
Простейшим электронным стабилизатором является параметрический стабилизатор (рис. 5а), состоящий из балластного сопротивления Rби стабилитрона. Он устанавливается в источнике питания между нагрузкой и выпрямителем со сглаживающим фильтром, если таковой имеется. В этой схеме используется свойство обратно смещенного стабилитрона сохранять напряжение в области пробоя практически неизменным при значительных избиениях протекающего через него тока (рис. 56, обратная ветвь ВДХ стабилитрона в области Uст). При отклонении Uвх от номинального значения почти все приращение входного напряжения падает на Rб , а выходное напряжение практически не меняется. При изменении тока нагрузки J2 (Uвх – const) перераспределение тока между стабилитроном и нагрузкой (изменяется Jcт ) почти без изменения общего тока J1 . Следовательно, напряжение на нагрузке остается практически постоянным. Коэффициент стабилизации параметрического стабилизатора определяется по формуле