Министерство общего и профессионального образования РФ
Воронежский государственный университет
факультет ПММ
кафедра Дифференциальных уравнении
Курсовая работа
“Моделирование распределения потенциала
в МДП-структуре”
Исполнитель : студент 4 курса 5 группы
Никулин Л.А.
Руководитель : старший преподаватель
Рыжков А.В.
Воронеж 1998г.
ОГЛАВЛЕНИЕ
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА В МДП-СТРУКТУРЕ
Математическая модель - - - - - - - - - - - - - - - - - - - 3
ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ К
РЕШЕНИЮ ЗАДАЧИ
Использование разностных схем для решения
уравнения Пуассона и для граничных условий
раздела сред
Уравнение Пуассона - - - - - - - - - - - - - - - - - - - - - - 5
Граничные условия раздела сред - - - - - - - - - - - - - - - - - - - - - - 8
Общий алгоритм численого решения задачи
Метод установления - - - - - - - - - - - - - - - - - - - - - - 10
Метод переменных направлений - - - - - - - - - - - - - - - - - - - - - - 13
Построение разностных схем - - - - - - - - - - - - - - - - - - - - - - 16
ПРИЛОЖЕНИЕ - - - - - - - - - - - - - - - - - - -
ЛИТЕРАТУРА - - - - - - - - - - - - - - - - - - -
Математическая модель распределения потенциала в МДП-структуре
Математическая модель
Пустьj(x,y) - функция, описывающая распределение потенциала в полупроводниковой структуре. В области оксла (СDEF) она удовлетворяет уравнению Лапласа:
d2j+d2j = 0
dx2 dy2
а в области полупроводника (прямоугольник ABGH) - уравнению Пуассона:
d2j+ d2j= 0
dx2 dy2
где
q - элементарный заряд e;
enn-диэлектрическая проницаемость кремния;
Nd(x,y) -распределение концентрации донорской примеси в подложке ;
Na(x,y) -распределение концентрации акцепторной примеси в подложке;
e0 -диэлектрическая постоянная
0 D E
y
B G
C F
A H
x
yj-½ < y < yj- ½ Ex(xi +½,yj) = Ei+ ½ ,j = const
yj-½ < y < yj- ½ Ex(xi - ½ ,yj) = Ei- ½ ,j = const (**)
xi-½ < x <xi+ ½ Ey(xi,yj + ½) = Ei,j+ ½ = const
xi-½ < x <xi+ ½ Ey(xi,yj-½ ) = Ei,j- ½ = constxi- ½ < x < xi+ ½
yj- ½ < y < yj+ ½ -Q(x,y) = Qij = const
Тогда
(Ex)i+ ½ ,j - (Ex)i -½ ,j r*j + (Ey)ij+ ½ - (Ey)ij- ½ h*i = Qijh*i r*j
где h*i = hi - hi+1 , r*j = rj - rj+1
2 2
Теперь Еi+ ½ ,j выражаем через значение j(x,y) в узлах сетки:
xi+1
òEx(x,yj)dx = - ji+1,j -jij
xi
из (**) при y=yj:
(Ex)i+ ½ ,j = - ji+1j - jij
hi+1
Анологично :
(Ey)i,j+ ½= -jij+1 - jij
rj+1
Отсюда:
(Dj)ij = 1 j i+1,j - j ij - j i j - j i-1,j + 1j i j+1 - j ij - j ij - j ij-1 =