Смекни!
smekni.com

Синхронизация SDH сетей (стр. 4 из 8)

Рис. 5 – Плезиохронная работа

Иерархический передатчик - приемник.

Источник первичного эталонного сигнала в управляющем узле генерирует размноженный и распределенный эталонный сигнал синхронизации (рис.6). Управляющий узел посылает свой эталонный сигнал на принимающие узлы. Эталонный синхросигнал иерархически распределяется по сети. Двумя главными компонентами этой сети являются генераторы приемника, используемые для регенерации эталонного сигнала синхронизации, и цифровые тракты, используемые для передачи синхросигналов по сети.

Рис. 6 – Иерархическая структура источник-приемник.

Взаимная синхронизация.

При взаимной синхронизации информация о синхронизации совместно используется всеми узлами сети (рис.7). Каждый генератор посылает и принимает сигналы эталонной синхронизации на все другие генераторы в сети. Синхронизация цепи определяется путем усреднения всех сигналов синхронизации, получаемых каждым генератором от всех других генераторов в сети. Теоретически, эта работа может обеспечить идентичные сигналы синхронизации на каждый узел, но в реальных условиях, при наличии несовершенных генераторов и несовершенной передачи информации о синхронизации, синхронизация подвержена флуктуации и стремится к общей частоте.

Рис. 7 – Режим взаимной синхронизации.

Импульсное дополнение (стаффинг)

Этот метод используется для передачи асинхронных потоков выше уровня DSI / EI. Цифровые потоки, подлежащие мультиплексированию, уплотняются дополнительными ложными импульсами. Это увеличивает их скорости до скорости независимого местного генератора. Исходящая скорость мультиплексора выше, чем сумма входящих скоростей. Ложные импульсы не несут никакой информации, они кодируются для идентификации. На стороне приемника ложные импульсы удаляются. Полученные пробелы в потоке импульсов затем удаляются, восстанавливая первоначальный поток данных.

Указатели и выравнивание указателей

SDH для переноса сигнала используют указатели полезной нагрузки. Указатель содержит фактический адрес начала виртуального контейнера на карте поля, отведенного под полезную нагрузку в структуре SDH.

Разность фаз и частот между двумя сетевыми элементами (NE) в SDH может быть компенсирована с помощью указателей полезной нагрузки. Если передающий NE SDH работает быстрее приемного, последний будет создавать отрицательное выравнивание указателя и сдвигать полезную нагрузку вперед на один байт или восемь бит, как показано на рисунке 8(a). Таким образом приемный NE будет подстраиваться под передающий без потери информации. Аналогично, если передающий NE более медленный, чем приемный, возникнет положительное выравнивание указателя на один байт, как показано на рисунке 8(б).

Размещение полезной нагрузки

Сигналы DS3 размещаются в SDH с использованием вставки битов (стаффинга) для компенсации расхождения в тактировании между DS3 и SDH.

Сигналы DS1 и E1 могут размещаться одним из четырех методов: асинхронное размещение, плавающее байт-синхронное размещение, фиксированное байт-синхронное размещение и бит синхронное размещение.

При асинхронном размещении сигнал DS1 или E1 размещаются в VT1.5 или VC-12/1З асинхронно с использованием вставки битов для устранения расхождений в тактировании. Для определения начала кадра VT/VC используются указатели. При асинхронном размещении сигналы DS1 или E1 транспортируются без проскальзывания и без повторного тактирования. Однако система будет подвержена действию выравнивания указателей, которое будет происходить из-за возможной разности частот между сетевыми элементами в тракте передачи.

Плавающее байт-синхронное размещение отличается от асинхронного тем, что не использует вставки битов для устранения расхождения в тактировании полезных нагрузок и сетевых элементов. Такое размещение обеспечивает прямой доступ к сигналам DS0. Однако при этом необходимо, чтобы DS1 или E1 были синхронизированы с сетевым элементом SDH. Любое расхождение в частотах между полезной входной нагрузкой и первым сетевым элементом SDH в тракте передачи ведет к появлению проскальзываний.

Фиксированное байт-синхронное размещение не допускает использования какой бы то ни было вставки битов или указателей в процессе размещения. Следовательно, DS1 или E1 должен быть синхронизирован с сетевым элементом SDH. Для согласования тактирования по всему тракту транспортировки сигнала должен быть предусмотрен буфер проскальзывания.

Бит-синхронное размещение аналогично фиксированному байт синхронному размещению, за исключением того, что при этом не предполагается, что структура DS1 или E1 организована в составе DS0. DS1 или E1 пересылаются в виде одиночного битового потока с кадрами DS0 или DS1/E1 или без них.

Предполагается, что большинство сетей будут использовать асинхронное размещение для транспортирования сигналов DS1 и E1.

Рис. 8a – Операция выравнивание указателя AU-3 – отрицательное выравнивание.

Рис. 8б – Операция выравнивание указателя AU-3 – положительное выравнивание.

Синхронизация телекоммуникаций.

Для синхронизации сетей E1 / DS1 большинство администраторов телекоммуникационных сетей использует метод иерархического источника - приемника (ведущий - ведомый). Источником основного эталонного сигнала синхронизация сети является один или более первичных эталонных генераторов (ПЭГ). Эталонный сигнал этого генератора распределяется по сети, состоящей из генераторов - приемников или ведомых задающих генераторов (ВЗГ) (рис.6).

Узел с наиболее стабильным генератором назначается узлом - источником. Узел - источник передает эталонную синхронизацию на один или более принимающих узлов. Рабочие характеристики принимающих узлов обычно такие же или хуже, чем у узла источника. Узел приемника захватывает эталонную частоту синхронизации источника и затем передает ее другим узлам приемника. Поэтому синхронизация распределяется вниз по иерархии узлов.

Принимающие узлы обычно разрабатываются для приема одного или большего числа эталонных сигналов. Один эталонный сигнал является активным. Все другие альтернативные эталонные сигналы являются резервными. В случае, если активный эталонный сигнал потерян, узел приемника может переключать эталонные сигналы, и подключается к альтернативному эталонному сигналу. Таким образом, каждый принимающий узел имеет доступ к синхронизации от одного или нескольких источников. Большинство сетей спроектированы таким образом, что всем генераторам приемникам подается два или более разных эталонных сигналов. В частных сетях это может быть невозможным из-за ограниченной возможности соединений между узлами.

Генераторы размещаются в соответствии с иерархией, основанной на уровнях рабочих характеристик. ANSI назначает уровни рабочих характеристик как уровни слоев (Stratum): слои 1, 2, 3, 4Е и 4, в порядке от лучших к худшим. ITU (9) назначает 4 уровни рабочих характеристик: первичный эталонный генератор, транзитный узел, локальный узел, терминал или узел СРЕ. Слой 1 или ПЭГ являются управляющими узлами для сети. Слой 2 или генераторы транзитного узла обычно находятся в коммутационных устройствах и в некоторых видах цифрового кроссового оборудовании. Е третьему слою, или генераторам местных узлов относится большая часть местного коммутационного оборудования, цифровые кроссовые системы, некоторые учрежденческие АТС (РВХ) и мультиплексоры T1. Слой 4, или генераторы СРЕ, включают большую часть мультиплексоров T1, РВХ, банков каналов и эхоподавителей.

Генераторы источника: Первичный эталонный генератор.

Первичный эталонный генератор (ПЭГ) является управляющим генератором для сети, обеспечивающей точность установки частоты лучше, чем 1х10-11 (7). Одним из классов ПЭГ является генератор слов 1. Генератор слов 1, по определению, является свободным генератором (7). Он не использует эталонный сигнал синхронизации для получения или запуска его синхронизации. Генераторы слов 1 обычно состоят из нескольких цезиевых стандартов частоты.

Тем не менее, ПЭГ может быть выполнен не только на основе первичных атомных стандартов частоты (7). Другими примерами ПЭГ являются генераторы систем всемирного координированного времени (GPS) и LORAN-С. Эти системы используют местные рубидиевые или кварцевые генераторы, которые запускаются информацией о синхронизации, получаемой от GPS или LORAN-С. Они не считаются принадлежащими к слою 1, т.к. они запускаются принудительно, но по своим параметрам классифицируются как первичные эталонные генераторы. Эти генераторы способны поддерживать погрешность от нескольких единиц 10-13 до нескольких единиц 10-12.

Влияние скорости проскальзываний на ПЭГ обычно не принимается во внимание. Сеть, синхронизируемая от двух ПЭГ, будет подвержена в наихудшем случае пяти проскальзываниям в год, обусловленным нестабильностью частот генераторов. По сравнению с характеристиками генераторов приемников эта цифра пренебрежимо мала, как показано в разделе IV. Поэтому, среди операторов телекоммуникационных сетей наблюдается тенденции в большей степени полагаться на ПЭГ, а для синхронизации их сетей использовать множество таких генераторов.