МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
БЕЛАРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОННИКИ
Кафедра химии
Факультет компьютерного проектирования
КУРСОВАЯ РАБОТА
по курсу: «Физико-химические основы микроэлектроники и технологии РЭС и ЭВС»
на тему:
«ТУННЕЛИРОВАНИЕ В МИКРОЭЛЕКТРОНИКЕ »
Выполнил: Приняла:
студент гр. 910204 Забелина И. А.
Шпаковский В.А.
Минск 2001 г.
СОДЕРЖАНИЕ
стр.
1. Туннельный эффект……………………………………………………………………………3
2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ
2.1 Контакт металл-металл…………………………………………………………...…………..5
2.2 Структура металл-диэлектрик-металл………….……………………………………………8
2.3 Токоперенос в тонких плёнках………………………………………………………………10
2.4 Туннельный пробой в p-n-переходе…………………………………………………………12
2.5 Эффекты Джозефсона………………………………………………………………………...13
2.6 Эффект Франца-Келдышева………………………………………………………………….15
3 Туннельный диод…..…………………………………………………………………………17
Литература………………………………………………………………………………………….20
1. Туннельный эффект
Рассмотрим поведение частицы при прохождении через потенциальный барьер. Пусть частица, движущаяся слева направо, встречает на своём пути потенциальный барьер высоты U0 и ширины l (рис. 1.1). По классическим представлениям движение частицы будет таким:
то частица беспрепятственно проходит над барьером;
E (E<U0), то частица отражается и летит в обратную сторону;
I II III Совершенно иначе поведение частицы по законам квантовой
Рис.1.1 Прохождение частицы барьера и полетит обратно. Во-вторых, при E<U0 имеется ве-
через потенциальный барьер. роятность того, что частица проникнет «сквозь» барьер и ока-
жется в области III. Такое поведение частицы описывается уравнением Шрёдингера:
Здесь
введя обозначение:
окончательно получим:
Аналогично для области II:
где
Слагаемое
Слагаемое
Слагаемое
Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где
Так как
Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:
где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.
Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.
2.1 КОНТАКТ МЕТАЛЛ-МЕТАЛЛ
Рассмотрим плотный контакт двух металлов М1 и М2 с разными работами выхода А1 и А2 (рис. 2.1.1).
A1 A2
| |
EF1 n21
n12 EF2
|
|
|
M1 M2
Рис. 2.1.1 Энергетическая диаграмма контакта двух металлов в начальный момент времени
Вследствие того, что уровень Ферми EF1 в М1 (уровень Ферми это то значение энергии уровня, выше которого значения энергии электрон принимать не может при Т=0 К) находится выше, чем EF2 в М2, соответствующие работы выхода А1<А2. Если Т
В общем случае поток электронов n12 в первоначальный момент времени будет значительно больше, чем поток n21. При этом из-за оттока электронов М1 будет заряжаться положительно, а М2- отрицательно. Электрон, переходящий из М1 в М2, переносит заряд –q, создавая разность потенциалов на контакте –V. Последующие электроны должны преодолевать возникающий потенциальный барьер –qV, величина которого непрерывно увеличивается с ростом числа перешедших в М2 электронов. Работа, совершаемая электронами по преодолению энергетического барьера –qV, переходит в потенциальную энергию электронов, в результате чего все энергетические уровни в М1 опускаются, а в М2 подымаются (рис. 2.1.2).