Посимвольная синхронизация используется при посимвольном приеме кодовых слов и обеспечивает разделение элементарных сигналов, соответствующих различным позициям кодового слова. Требования к точности посимвольной синхронизации зависят от используемого способа обработки элементарных информационных сигналов в приемнике. При обработке, близкой к оптимальной, а она в нашем случае именно такая, необходимо достаточно точное определение границ этих сигналов. Требования к точности синхронизации возрастают с уменьшением длительности элементарных сигналов.
Рисунок 5 Функциональная схема инерционной системы посимвольной синхронизации
Для выделения сигналов посимвольной синхронизации непосредственно используется последовательность принимаемых информационных символов. На Рисунок 5 показана функциональная схема инерционной системы посимвольной синхронизации. В результате дифференцирования сигнала
Анализ таких систем имеет целью определить флюктуации моментов временных меток относительно положения, соответствующих идеальной работе. В нашем случае мы будем считать, что система синхронизации работает идеально. В качестве показателя точности можно взять среднеквадратическую ошибку, которая для нормальной работы должна быть много меньше длительности одного символа.
Расчет Определение параметров имитационной модели
1) Источник дискретных сообщений:
- дискретные независимые сообщения с заданными вероятностями появления в источнике V(1) = 4;
- количество различных сообщений JU = 16;
- вероятность появления различных значений сообщения A(1...16) = 0.0625;
2) Кодирующее устройство:
- ортогональный код V(2) = 4;
- количество символов NS = 16;
3) Радиоканал:
- радиоканал, использующий сигнал КИМ-ЧМ и приемный тракт с частотным детектором на разнесенных согласованных фильтрах V(7) = 4, V(9) = 1.
- уровень насыщения в видеоусилителе
4) Аддитивные помехи:
- Широкополосная шумовая помеха. На входе радиоканала такая помеха представляет собой “белый” шум.
- параметром модели помехи является дисперсия
- Узкополосная шумовая помеха:
- в данной модели мы не можем учесть помеху как узкополосную, так как не выполняется условие
5) Замирание амплитуды сигнала (фединг):
- случайные замирания амплитуды по закону Релея-Райса с экспоненциальной временной корреляцией V(6) = 2;
- среднее значение компоненты
- среднеквадратическое отклонение компоненты
- коэффициент корреляции
6) Временное положение меток системы символьной синхронизации:
- флюктуация временного положения меток отсутствуют (символьная синхронизация идеальная) V(3) = 1;
- номинальное положение метки от конца символа
7) Флюктуация фазы опорного напряжения синхронного детектора:
- идеальный синхронный детектор V(4) = 0;
8) Декодирующее устройство:
- прием кодового слова в целом V(8) = 5;
9) Продолжительность эксперимента:
- продолжительность машинного эксперимента определяется объемом исследуемой выборки сообщений (кодовых слов). Возьмем количество слов равное количеству команд переданных за сеанс связи M = 64.
10) Дополнительные параметры:
- IX = 7.
Анализ результатов расчета и моделирования
Расчеты, проведенные при выборе базового варианта радиолинии, дали следующие показатели достоверности приема информации:
· вероятность отказа от декодирования –
· вероятность ошибки кодового слова –
В результате моделирования получены следующие оценки достоверности:
· вероятность отказа от декодирования –
· вероятность ошибки кодового слова –
При моделировании была взята выборка
Как видно, результаты расчета и моделирования различны, однако надо заметить, что показатели в обоих случаях удовлетворяют ТЗ.
Оценим точность статического эксперимента при моделировании, учитывая количество независимых испытаний в данном эксперименте их 64.
· вероятность отказа от декодирования равна
· вероятность ошибки кодового слова равна
Итак, все получившиеся различия в результатах расчета и моделирования, являются неизбежными, те более, когда имитационная модель оставляет желать лучшего.
1. “Теория и проектирование радиосистем”, Л. В. Березин, В. А. Вейцель. – М.: Сов. радио, 1977.
2. “Основы радиоуправления”, под ред. В. А. Вейцеля и В. Н. Типугина. – М.: Сов. радио, 1973.
3. “Радиотехнические системы передачи информации”, П. И. Пеннин, Л. И. Филиппов. – М.: Радио и связь, 1984.
4. “Автоматизированная модель радиолинии с цифровой передачей информации”, уч. пособие, В. А. Вейцель, С. С. Нужнов. – М.: МАИ, 1985.
5. “Методические указания к курсовому проекту «Радиолинии с цифровой передачей информации»”, авт.-сост. В. А. Вейцель, А. И. Куприянов, М. И. Жодзишский. – М.: МАИ, 1987.
6. “Инженерный справочник по космической технике”, под. ред. Соловова. – М.: Воениздат, 1974.
7. http://www.airwar.ru/enc/bpla/pchela.html
8. http://www.airwar.ru/enc/bpla/rq4.html