Смекни!
smekni.com

Усилитель модулятора лазерного излучения (стр. 3 из 6)


где U¢кэосправочное или паспортное значение напряжения;

Uкэо – требуемое значение напряжения.

Сопротивление базы рассчитаем по формуле:


(3.3.13)

Статический коэффициент передачи тока в схеме с ОБ найдем по формуле:

(3.3.14)

Найдем ток эмиттера по формуле:

(3.3.15)

А

Найдем сопротивление эмиттера по формуле:

(3.3.16)

где Iэо – ток в рабочей точке, занесенный в формулу в мА.


Проводимость база-эмиттер расчитаем по формуле:

(3.3.17)


Определим диффузионную емкость по формуле:


(3.3.18)

Крутизну транзистора определим по формуле:


(3.3.19)

3.3.3.2 Однонаправленная модель

Поскольку рабочие частоты усилителя заметно больше частоты

, то из эквивалентной схемы можно исключить входную ёмкость, так как она не влияет на характер входного сопротивления транзистора. Индуктивность же выводов транзистора напротив оказывает существенное влияние и потому должна быть включена в модель. Эквивалентная высокочастотная модель представлена на рисунке 3.7. Описание такой модели можно найти в [2].

Рисунок 3.7

Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам [2].

Входная индуктивность:

, (3.3.20)

где

–индуктивности выводов базы и эмиттера.

Входное сопротивление:

, (3.3.21)

где

, причём
,
и
– справочные данные.

Крутизна транзистора:

, (3.3.22)

где

,
,
.

Выходное сопротивление:

. (3.3.23)

Выходная ёмкость:

. (3.3.24)

В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

нГн;

пФ;

Ом

Ом;

А/В;

Ом;

пФ.

3.3.4 Расчет полосы пропускания.

Проверим обеспечит ли выбранное сопротивлении обратной связи Rос, расчитанное в пункте 3.3.1, на нужной полосе частот требуемый коэффициент усиления, для этого воспользуемся следующими формулами[2]:

(3.3.25)

(3.3.26)

Найдем значение емкости коллектора при Uкэ=10В по формуле (3.3.12):

Найдем сопротивление базы по формуле (3.3.13):

Статический коэффициент передачи тока в схеме с ОБ найдем по формуле (3.3.14):

Найдем ток эмиттера по формуле (3.3.15):

А

Найдем сопротивление эмиттера по формуле (3.3.16):

Ом

Определим диффузионную емкость по формуле (3.3.18):

пФ

, (3.3.27)

, (3.3.28)

где Yн – искажения приходящиеся на каждый конденсатор;

дБ,

или

(3.3.29)

Гц

Выбранное сопротивление Rос обеспечивает заданный диапазон частот.

3.3.5 Расчёт цепей термостабилизации

Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.

3.3.4.1 Пассивная коллекторная термостабилизация

Данный вид термостабилизации (схема представлена на рисунке 3.8) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.

Рисунок 3.8

Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение

(в данном случае 7В) и ток делителя
(в данном случае
, где
– ток базы), затем находим элементы схемы по формулам:

; (3.3.30)

, (3.3.31)

где

– напряжение на переходе база-эмиттер равное 0.7 В;

. (3.3.32)

Получим следующие значения:

Ом;

Ом;

Ом.

3.3.4.2 Активная коллекторная термостабилизация

Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.9. Её описание и расчёт можно найти в [2].

Рисунок 3.9

В качестве VT1 возьмём КТ361А. Выбираем падение напряжения на резисторе

из условия
(пусть
В), затем производим следующий расчёт: