Смекни!
smekni.com

Усилитель модулятора лазерного излучения (стр. 4 из 6)

; (3.3.33)

; (3.3.34)

; (3.3.35)

; (3.3.36)

, (3.3.37)

где

– статический коэффициент передачи тока в схеме с ОБ транзистора КТ361А;

; (3.3.38)

; (3.3.39)

. (3.3.40)

Получаем следующие значения:

Ом;

мА;

В;

кОм;

А;

А;

кОм;

кОм.

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.

3.3.4.3 Эмиттерная термостабилизация

Для выходного каскада выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.10. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [3].

Рисунок 3.10

Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера

и ток делителя
(см. рис. 3.4), а также напряжение питания
;

2. Затем рассчитываются

.

3. Производится поверка – будет ли схема термостабильна при выбранных значениях

и
. Если нет, то вновь осуществляется подбор
и
.

В данной работе схема является термостабильной при

В и
мА. Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле
В. Расчёт величин резисторов производится по следующим формулам:

; (3.3.41)

; (3.3.42)

. (3.3.43)

Для того, чтобы выяснить будет ли схема термостабильной производится расчёт приведённых ниже величин.

Тепловое сопротивление переход – окружающая среда:

, (3.3.44)

где

,
– справочные данные;

К – нормальная температура.

Температура перехода:

, (3.3.45)

где

К – температура окружающей среды (в данном случае взята максимальная рабочая температура усилителя);

– мощность, рассеиваемая на коллекторе.

Неуправляемый ток коллекторного перехода:

, (3.3.46)

где

– отклонение температуры транзистора от нормальной;

лежит в пределах
А;

– коэффициент, равный 0.063–0.091 для германия и 0.083–0.120 для кремния.

Параметры транзистора с учётом изменения температуры:

, (3.3.47)

где

равно 2.2(мВ/градус Цельсия) для германия и

3(мВ/градус Цельсия) для кремния.

, (3.3.48)

где

(1/ градус Цельсия).

Определим полный постоянный ток коллектора при изменении температуры:

, (3.3.49)

где

. (3.3.50)

Для того чтобы схема была термостабильна необходимо выполнение условия:

,

где

. (3.3.51)

Рассчитывая по приведённым выше формулам, получим следующие значения:

Ом;

Ом;

Ом;

Ом;

К;

К;

А;

Ом;

;

Ом;

А;

А.

Как видно из расчётов условие термостабильности не выполняется.

3.4 Расчёт входного каскада по постоянному току

3.4.1 Выбор рабочей точки

При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 3.3.1 с учётом того, что

заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов
мА и
В). Поэтому координаты рабочей точки выберем следующие
мА,
В. Мощность, рассеиваемая на коллекторе
мВт.

3.4.2 Выбор транзистора

Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 3.3.2. Этим требованиям отвечает транзистор КТ371А. Его основные технические характеристики приведены ниже.

Электрические параметры:

1. граничная частота коэффициента передачи тока в схеме с ОЭ

ГГц;

2. Постоянная времени цепи обратной связи

пс;

3. Статический коэффициент передачи тока в схеме с ОЭ

;

4. Ёмкость коллекторного перехода при

В
пФ;

5. Индуктивность вывода базы

нГн;

6. Индуктивность вывода эмиттера

нГн.