Смекни!
smekni.com

Устройства СВЧ (стр. 3 из 4)

Высокочастотное соединители для жестких коаксиальных, вол­новодов на повышенный уровень мощности выполняют без опорных диэлектрических шайб. Эскиз возможной конструкции коаксиального соединителя для жесткой коаксиальной линии показан на рис. 7, б. Во многих случаях высокочастотные соединители для жестких коаксиальных волноводов должны быть герметичными как для защиты внутренних рабочих поверхностей проводника от внешних воздействий, так и для повышения электрической прочности тракта путем создания внутри тракта избыточного давления.

3.1 Соединители волноводных трактов

Соединение отрезков прямоугольных волноводов осуществляют с помощью фланцев двух типов: контактных и дроссельных.

Контактные притертые фланцы требуют тщательной обработки и строгой параллельности соприкасающихся поверхностей и могут обеспечивать высокое качество сочленения, которое, однако, быстро ухудшается при много­кратных пересборках тракта.

Рис. 7 Высокочастотные коаксиальные соединители:

1 — штыревой контакт 2 — гнездовой контакт; 3 — штыревая втулка; 4 — гнез­довая втулка

Рис. 8 Контактный волноводный фланец:

1 — контактная прокладка; 2 — канавки с уплотнителем; 3 — отверстия

для фик­сирующих штифтов

Для улучшения качества кон­такта между фланцами на штифтах помещают бронзовую прокладку, имеющую ряд разведенных пружинящих лепест­ков, прилегающих к внутрен­нему периметру поперечного сечения соединяемых волново­дов (рис. 8). Защита сочле­нения от пыли и влаги осуще­ствляется резиновыми уплотнительными кольцами, уложен­ными в канавках на фланцах по обе стороны от контактной прокладки.

В дроссельном фланце (рис. 9) контакт между волноводами осуществляется через последовательный короткозамкнутый шлейф длиной lВ/2, выполненный в форме канавок и углубления внутри фланца. Четвертьволновой участок между точкой короткого замы­кания А и точкой механического контакта В является коаксиаль­ным волноводом с волной типа Н11, а второй четвертьволновый участок между точкой механического контакта В и точкой вклю­чения шлейфа в волновод С является отрезком радиальной линии передачи. Точка механического контакта попадает в узел распре­деления поверхностного тока J и поэтому на сопротивлении контакта rкне происходит заметного выделения мощности. Виртуаль­ное короткое замыкание между сочленяемыми волноводами в точ­ке С обеспечивается тем, что суммарная длина дроссельных кана­вок от точки А до точки С составляет lв/2. Для защиты полости тракта от внешних воздействий применяют уплотнительную про­кладку, укладываемую в добавочную концентрическую канавку.

Рис. 9 Дроссельный волноводный фланец: a — эскиз; б — схема замещения

Дроссельные фланцы не критичны к качеству механического кон­такта и небольшим перекосам в сочленении, не снижают электри­ческой прочности тракта. Их недостатками являются зависимость качества согласования от частоты и сложность конструкции.

4 ПОВОРОТЫ ЛИНИЙ ПЕРЕДАЧИ

Повороты и изгибы линий передачи относятся к числу нерегулярностей, снижающих качество согласования и электропрочность трактов СВЧ. В уголковых изгибах любых линий передачи в той или иной мере возбуждаются по­ля нераспространяющихся волн высших типов, которым соответ­ствует определенный запас элект­ромагнитной энергии.

Рис. 10 Поворот линий передачи с компенсацией отражений

Для мини­мизации возникающих из-за этого отражений конструкции изгибов дополняют различными согла­сующими элементами. Например, изгиб на 90° коаксиального трак­та сочетают с четвертьволновым изолятором и дополняют неболь­шой проточной на внутреннем проводнике линии (рис. 10,а). Подбор расположения размеров проточки, а также правильный выбор длины четвертьволнового изолятора позволяют сохранить хорошее согласование в тракте в широкой полосе частот.

Повороты в полосковой линии передачи согласовывают с по­мощью «подрезания» внешних углов примерно на одну треть диа­гонали, соединяющей внутренний и внешний углы поворота (рис. 10, б). Однако такие компенсированные повороты вносят небольшое добавочное запаздывание в линию передачи, которое должно учитываться при расчете электрических длин резонансных отрезков. Подрезание углов оказывается эффективным способом умень­шения отражений также в прямоугольных и круглых волноводах, причем оптимальный размер скоса (рис.10, в) находят с по­мощью графиков, имеющихся в справочной литературе. Концен­трация силовых линий поля Е в области резких изгибов снижает электрическую прочность тракта. Этот недостаток в значительной мере устраняется в двойных поворотах и в плавных изгибах. В двойных поворотах (рис. 10, г) две нерегулярности разносят на расстояние l, примерно равное lВ/4. Улучшение согласования происходит как из-за уменьшения отражений от каждой нерегу­лярности, так и из-за взаимной компенсации отражений от них.

Плавные изгибы тракта могут быть охарактеризованы схемой замещения в виде отрезка линии передачи с несколько изменен­ным волновым сопротивлением. Для улучшения согласования сле­дует увеличивать радиус изгиба или выбирать длину изгиба, крат­ной lВ/2.

5 ПЕРЕХОДЫ МЕЖДУ ЛИНИЯМИ ПЕРЕДАЧИ РАЗЛИЧНЫХ ТИПОВ

Очень распространенными узлами СВЧ - трактов являются переходы с одной линии передачи на другую, которые также называют возбудителями волны заданного типа. По схеме замещения переходы являются взаимными реактивными четырехполюсниками, и в их проектировании основное внимание уделяется достижению Хорошего качества согласования входов в полосе частот при обеспечении необходимой электрической прочности. Рассмотрим ряд характерных конструкций переходов.

Возбуждение прямоугольного волновода с волной типа H10 от коаксиального волновода с Т-волной производится с помощью коаксиально-волноводных переходов (рис.11).

Основным элементом таких переходов являются обтекаемые элек­трическим током штыри, размещаемые в короткозамкнутом с одной стороны волноводе параллельно силовым линиям поля Е.

В зондовом переходе (рис.11, а) согласование входов обес­печивается изменением длины зонда l3, а также подбором рас­стояний l и х, определяющих, положение зонда. Для расширения полосы частот согласования желательно увеличивать диаметр зонда d. При тщательном выполнении зондовый переход обеспечи­вает полосу частот согласования 15—20 % относительно расчет­ной частоты при КБВ³О,95. Недостатком зондового перехода яв­ляется снижение электропрочности из-за концентрации силовых линий поля Е на конце зонда. В определенной мере этот недоста­ток преодолевается в коаксиально-волноводном переходе с после­довательным шлейфом (рис. 11, б), однако даже при самом тща­тельном подборе расстояний l и lш рабочая относительная полоса частот составляет ~7%.

Лучшие результаты по согласованию и электропрочности имеет переход с поперечным стержнем (рис. 11, в), дополненный согласующей индуктивной диафрагмой. В такой конструкции достижи­ма относительная полоса частот согласования ~15%. Максималь­ных широкополосности (~20% при КБВ³0,95) и электропроч­ности достигают в коаксиально-волноводных переходах так назы­ваемого «пуговичного» типа (рис. 11, г), требующих, однако, тщательного экспериментального подбора формы проводников в сочетании с дополнительной наст­ройкой качества согласования с помощью индуктивной диафрагмы.

Рис. 11 Коаксиально-волноводные переходы:

а — зондовый; б — с коаксиальным шлейфом; в — с поперечным

стержнем; г—пуговичный

Применение коаксиально-волноводных переходов для возбуждения волны Е10 в круглом волноводе показано на рис. 12 на примере вращающёгося сочленения.

Рис. 12 Волноводное вращаю­щееся сочленение с волной типа Е01

Короткие отрезки коаксиального волновода с Т-волной обеспечивают фильтра­цию волн высших типов и устраняют возможность возбуждения в круглом волноводе паразитной аксиально-несимметричной волны Н11 (эта волна более низкого типа, чем волна E01). Соединение вращающихся частей круглого волно­вода осуществляют с помощью коаксиального дросселя длиной lо/2, аналогичного дросселям вращающегося коаксиального сочле­нения на рис. 7.10.

Возбуждение волны низшего типа Н11 в круглом волноводе возможно с помощью плавного перехода от прямоугольного вол­новода с постепенной деформацией формы поперечного сечения от прямоугольной к круглой (рис. 13, а).

Рис. 13 Соосные переходы от прямо­угольного волновода с волной Н01к круг­лому волноводу с волной Н11

Если длина такого пере­хода превышает длину волны, то отражения в широкой полосе частот оказываются незначительными. В более компактном узко­полосном переходе, показанном на рис. 13, б, сочленение соосных прямоугольного и круглого волноводов осуществляется через согласующую четвертьволновую вставку с овальной формой попе­речного сечения.