Смекни!
smekni.com

Физические основы электроники (стр. 8 из 16)

Рисунок 1.19 Структура омического контакта.

1.4.5 Явления на поверхности полупроводника

В результате взаимодействия полупроводника и окру­жающей среды на поверхности кристалла образуются раз­личные соединения, отличающиеся по своим свойствам от основного материала. Кроме того, обработка кристалла приводит к дефектам кристаллической решетки на поверх­ности полупроводника. По этим причинам возникают по­верхностные состояния, повышающие вероятность появ­ления свободных электронов или незаполненных ковалентных связей. Энергетические уровни поверхностных состоя­ний могут располагаться в запрещенной энергетической зоне и соответствовать донорным и акцепторным примесям.

Поверхностные состояния меняют концентрацию носи­телей заряда, и в приповерхностном слое полупроводника возникает объемный заряд, приводящий к изменению уров­ня Ферми. Поскольку в состоянии равновесия уровень Ферми во всем кристалле полупроводника одинаков, поверх­ностные состояния вызывают искривление энергетических уровней в приповерхностном слое полупроводника.

В зависимости от типа полупроводника и характера по­верхностных состояний может происходить обеднение или обогащение поверхности кристалла носителями заряда.

Обеднение возникает в том случае, если поверхност­ный заряд совпадает по знаку с основными носителями заряда. На рис. 1.20 показано образование обедненного слоя на поверхности полупроводника n-типа при такой плотности поверхностных состояний, что уровни Win и Wфn не пересекаются. Повышение плотности пространст­венного заряда может привести к пересечению уровня Ферми с уровнем середины запрещенной зоны (рис. 1.21), что соответствует изменению типа электропроводности у поверхности полупроводника. Это явление называют ин­версией типа электропроводности, а слой, в котором. оно наблюдается, - инверсным слоем.

Рис. 1.20 Образование обедненного слоя на поверхности полупроводника n-типа.

Рис. 1.21 Изменение типа электропроводимости на поверхности полупроводника n-типа.

Если знаки поверхностного заряда и основных носите­лей противоположны, происходит обогащение приповерхностной области основными носителями зарядов. Такую область называют обогащенным слоем (рис. 1.22).

Электропроводность приповерхностного слоя полупро­водника может изменяться под действием электрического поля, возникающего за счет напряжения, прикладываемо­го к металлу и полупроводнику, разделенным диэлектриком. Если предположить, что до включения напряжения поверх­ностные состояния на границе полупроводника и диэлект­рика отсутствуют, то электропроводности приповерхност­ного слоя и объема полупроводника будут одинаковыми.

При включении напряжения между металлом и полу­проводником возникает электрическое поле, и на поверх­ности металла и в приповерхностном слое полупроводни­ка, как на пластинах конденсатора, накапливаются заряды. Например, если полупроводник электронный и к нему прикладывается отрицательное напряжение, то под дейст­вием электрического поля у

Рисунок 1.22 Образование обогащенного слоя на поверхности полупроводника n-типа.

Рисунок 1.23 График изменения типа электропроводности на поверхности полупроводника.

поверхности увеличиваются концентрация электронов и электропроводность приповерхностного слоя полупроводника (см. рис. 1.22). При изме­нении полярности напряжения концентрация электронов в приповерхностном слое уменьшается, а дырок - увели­чивается. В связи с этим электропроводность приконтактной области уменьшается, стремясь к собственной. Уве­личение напряжения приводит к тому, что концентрация дырок становится выше концентрации электронов и про­исходит изменение (инверсия) типа электропроводности слоя. При этом электропроводность приповерхностного слоя увеличивается. Зависимость электропроводности припо­верхностного слоя полупроводника n-типа от напряжения показана на рис. 1.23. Это явление принято называть эф­фектом поля.

2 ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

2.1 Классификация

Классификация полупроводниковых диодов производится по следующим признакам:

- методу изготовления перехода: сплавные, диффузионные, планарные, точечные, диоды Шоттки и др.;

- материалу: германиевые, кремниевые, арсенидо-галлиевые и др.;

- физическим процессам, на использовании которых основана работа диода: туннельные, лавинно-пролетные, фотодиоды, светодиоды. диоды Ганна и др.;

- назначению: выпрямительные, универсальные, импульс­ные, стабилитроны, детекторные, параметрические, смеситель­ные, СВЧ-диоды и др.

Некоторые из указанных типов диодов по назначению будут рас­смотрены в настоящей главе, а другие - в соответствующих разде­лах учебного пособия.

2.2 Выпрямительные диоды

Выпрямительными обычно называют диоды, предназначенные для преобразования переменного напряжения промышленной час­тоты (50 или 400 Гц) в постоянное. Основой диода является обыч­ный p-n переход. В практических случаях p-n переход диода имеет достаточную площадь для того, чтобы обеспечить большой прямой ток. Для получения больших обратных (пробивных) напряжений ди­од обычно выполняется из высокоомного материала.

Основными параметрами, характеризующими выпрямительные диоды, являются (рисунок 2.1):

- максимальный прямой ток Iпр max;

- падение напряжения на диоде при заданном значении прямого тока Iпр (Uпр » 0.3...0,7 В для германиевых диодов и Uпр » 0,8...1,2 В -для кремниевых);

- максимально допустимое постоянное обратное напряже­ние диода

Uобр max ;

- обратный ток Iобр при заданном обратном напряжении Uобр (значе­ние обратного тока германиевых диодов на два -три порядка боль­ше, чем у кремниевых);

- барьерная емкость диода при подаче на него обратного напря­жения некоторой величины;

- диапазон частот, в котором возможна работа диода без суще­ственного снижения выпрямленного тока;

- рабочий диапазон температур (германиевые диоды работают в диапазоне -60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми обратными токами кремниевых диодов).

Рисунок 2.1 К определению параметров выпрямительных диодов.

Выпрямительные диоды обычно подразделяются на диоды ма­лой, средней и большой мощности, рассчитанные на выпрямленный ток до 0.3, от 0,3 до 10 и свыше 10 А соответственно.

Для работы на высоких напряжениях (до 1500 В) предназначе­ны выпрямительные столбы, представляющие собой последова­тельно соединенные p-n переходы, конструктивно объединенные в одном корпусе. Выпускаются также выпрямительные матрицы и блоки, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие Iпр max до 1 А и Uo6p max до 600 В.

При протекании больших прямых токов Iпр и определенном паде­нии напряжения на диоде Uпp B нем выделяется большая мощность. Для отвода данной мощности диод должен иметь большие размеры p-n перехода, корпуса и выводов. Для улучшения теплоотвода ис­пользуются радиаторы или различные способы принудительного охлаждения (воздушное или даже водяное).

Среди выпрямительных диодов следует выделить особо диод с барьером Шоттки. Этот диод характеризуется высоким быстродейст­вием и малым падением напряжения (Uпp < 0,6 В). К недостаткам ди­ода следует отнести малое пробивное напряжение и большие об­ратные токи.

2.3 Стабилитроны и стабисторы

Стабилитроном называется полупроводниковый диод, на об­ратной ветви ВАХ которого имеется участок с сильной зависимо­стью тока от напряжения (рисунок 2.2), т.е. с большим значением крутиз­ны DI/DU (DI= Imax - Iст min). Если такой участок соответствует прямой ветви ВАХ, то прибор называется стабистором.

Стабилитроны используются для соз­дания стабилизаторов напряжения.

Напряжение стабилизации Uст равно напряжению электрического (лавинного) пробоя p-n перехода при некотором заданном токе стабилиза­ции Iст (рисунок ). Стабилизирующие свойства ха­рактеризуются дифференциальным со­противлением стабилитрона rд = DU/DI, которое должно быть возможно меньше.

К параметрам стабилитрона относятся: напряжение стабилизации Ucт, минимальный и максимальный токи стабилизации Iст min Iст max.

Промышленностью выпускаются стабилитроны с параметрами: Ucт от 1,5 до 180 В, токи стабилизации от 0,5 мА до 1,4 А.

Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.

Рисунок 2.2 К определению параметров стабилитронов.

2.4 Универсальные и импульсные диоды

Они применяются для преобразования высокочастотных и им­пульсных сигналов. В данных диодах необходимо обеспечить мини­мальные значения реактивных параметров, что достигается благо­даря специальным конструктивно-технологическим мерам.