Билет №1
Определение ЦА. Основные понятия теории автоматов: ЦА конечные, синхронные, асинхронные, идеализированные, абстрактные, структурные. Абстрактная и структурная теория автоматов.
ЦА - устройство, предназначенное для преобразования цифровой информации, способное переходить под воздействием входных сигналов из одного состояния в другое и выдавать выходные сигналы.
ЦА конечны, когда множество входных и выходных сигналов, а также число входных и выходных каналов и множество состояний автомата конечны.
Синхронный ЦА – входные сигналы действуют в строго определенные моменты времени при Т=конст, определяемые генератором синхронизирующих импульсов, в которые возможен переход автомата из одного состояния в другое.
Асинхронный ЦА – Т <> конст и определяется моментами поступления входных сигналов, а переход автомата из одного состояния в другое осуществляется при неизменном состоянии входа.
Идеализированный ЦА – Не учитываются переходные процессы в элементах схемы автомата, разница в фактических величинах Т для правильного функционирования автомата не имеет значения, поэтому для описания законов функционирования ЦА вводят абстрактное время, принимающее целые неотрицательные значения.
Абстрактный ЦА - шестикомпонентный вектор S = {A,z,w,σ,λ,a1}, у которого: А- множество состояний автомата, Z – входные сигналы, W- выходные сигналы, σ- функция переходов, λ- функция выходов, а1 – начальное состояние автомата.
Структурный ЦА – учитывает структуру входных и выходных сигналов, а также его внутреннее устройство на уровне структурных схем.
Структурная теория ЦА изучает общие приемы построения структурных схем автоматов на основе элементарных автоматов.
Абстрактная теория ЦА – изучаются наиболее общие законы их поведения без учета конечной структуры автомата и физической природы информации.
Билет №2
Варианты ЦА: автоматы Мили и Мура, С-автомат, автомат без памяти, автономный автомат, автомат без выхода, управляющие и операционные автоматы, микропрограммные автоматы.
Автомат Мили – a(t+1) = σ (a(t), z(t)); w(t) = λ (a(t), z(t)); a(0) = a1, t= 0,1,2,...
Автомат Мура – a(t+1) = σ (a(t), z(t)); w(t) = λ (a(t)); a(0) = a1, t= 0,1,2,...
С-автомат: под абстрактным С-автоматом понимают математическую модель цифрового устройства, определяемую восьмикомпонентным вектором S = {A,Z,W,U,σ,λ1, λ2,a1}, где А- множество состояний, Z- входной алфавит, W- выходной алфавит автомата Мили, U- выходной алфавит автомата Мура, σ- функция переходов автомата, λ1- функция выходов автомата Мили, λ2- функция выходов автомата Мура, а1 – начальное состояние.
Автомат без памяти(КС): Алфавит состояний такого автомата содержит единственную букву, поэтому понятие функции переходов вырождается и становится ненужным для описания работы автомата, т.е. выходной сигнал в данном такте зависит только от входного сигнала того же такта и никак не зависит от ранее принятых сигналов.
Автономный автомат: В таком автомате входной алфавит состоит из одной буквы. Автомат задается четырьмя объектами: А, W, σ, λ с возможным выделением начального состояния а1. Если автомат конечен и число его состояний равно к, то среди значений а(1), А(2),…, а(к) найдутся повторяющиеся состояния. АА используются для построения генераторов периодических последовательностей, генераторов синхросерий и в других задающих устройствах.
Автомат без выхода: В таком автомате выходной алфавит содержит только одну букву. Автомат задается тремя объектами: А, Z, σ. Из функций, задающих поведение автомата, сохраняется лишь функция переходов.
Управляющие и операционные автоматы: ОА реализует действия над исходной информацией (словами), т.е. является исполнительной частью операционного устройства, а УА управляет работой ОА, т.е. вырабатывает необходимые последовательности управляющих сигналов в соответствии с алгоритмом выполняемой операции. УА используются не только в операционных устройствах вычислительной техники в системе УА-ОА, но и в разнообразных системах автоматики по управлению технологическими процессами и объектами.
Микропрограммные автоматы: Алгоритм записываемый с помощью микроопераций и логических условий, называется микропрограммой.
Билет №3
Автоматы Мили и Мура. С-автомат. Законы функционирования. Основные различия.
Автомат Мили – a(t+1) = σ (a(t), z(t)); w(t) = λ (a(t), z(t)); a(0) = a1, t= 0,1,2,...
Автомат Мура – a(t+1) = σ (a(t), z(t)); w(t) = λ (a(t)); a(0) = a1, t= 0,1,2,...
Эти автоматы различаются способом определения выходного сигнала. В автомате Мили функция λ определяет выходной сигнал в зависимости от состояния автомата и входного сигнала в момент времени t, а в автомате Мура накладываются ограничения на функцию λ, заключающиеся в том, что выходной сигнал зависит только от состояния автомата и не зависит от значения входных сигналов. Выходные сигналы ЦА Мура отстают на один такт от выходных сигналов ЦА Мили, эквивалентного ему.
С-автомат: под абстрактным С-автоматом понимают математическую модель цифрового устройства, определяемую восьмикомпонентным вектором S = {A,Z,W,U,σ,λ1, λ2,a1}, где А- множество состояний, Z- входной алфавит, W- выходной алфавит автомата Мили, U- выходной алфавит автомата Мура, σ- функция переходов автомата, λ1- функция выходов автомата Мили, λ2- функция выходов автомата Мура, а1 – начальное состояние.
a(t+1) = σ (a(t), z(t)); w(t) = λ 1(a(t), z(t)); u(t) = λ (a(t)); a(0) = a1, t= 0,1,2,...
Отличие С-автомата в том, что он одновременно реализует две функции выходов λ1 и λ2, каждая из которых характерна для модели Мили и модели Мура в отдельности. От С-автомата легко перейти к автоматам Мили и Мура с учетом возможных сдвигов выходных сигналов на такт, аналогично тому, как возможен переход от автомата Мили к автомату Мура и наоборот. Много реальных автоматов работает по модели С-автомата.
Билет №4
Системы канонических уравнений (СКУ) и системы выходных функций (СВФ). Построение СКУ И СВФ для автоматов Мили и Мура.
СКУ и СВФ являются аналитической интерпретацией таблиц переходов и выходов или графов ЦА. СКУ определяет функции переходов ЦА, а СВФ определяет функции выходов ЦА.
Каждое состояние ЦА интерпретируется как событие, соответствующее множеству переходов в это состояние: As(t+1) = v Zf(t)&Am(t). Для сокращения записи СКУ и СВФ опускают знаки конъюнкции и времени t в правой части уравнения.
Для автомата Мили: СКУ: a1(t+1) = a1z1 v a2z2 v a4z2; a2(t+1) = a1z2; a3(t+1) = a3z1 v a4z2; a4(t+1) = a2z1 v a3z2
CВФ: w1(t) = a1z1 v a1z2; w2(t) = a2z2; w3(t) = a3z1 v a4z2; w4(t) = a4z1; w5(t) = a4z1 v a3z2
Для автомата Мура: a1(t+1) = a2z1 v a3z1; a2(t+1) = a4z2; a3(t+1) = a6z1; a4(t+1) = a3z2 v a2z2 v a1z2; a5(t+1) = a5z1 v a6z2; a6(t+1)= a4z1 v a5z2
СВФ: w1(t) = a1 v a4; w2(t) = a1; w3(t) = a5; w4(t) = a3; w5(t) = a6
Билет №5
Задание ЦА на стандартных языках: таблицы, графы и их аналитическая интерпретация – СКУ и СВФ. Условия однозначности и полной определенности.
Стандартные (автоматные) языки задают функции переходов и выходов в явном виде. Для того, чтобы задать автомат, необходимо описать все компоненты вектора S = {A,z,w,σ,λ,a1}.
Табличный способ: автомат Мили описывается с помощью двух таблиц: таблицы переходов и таблицы выходов. Таблица переходов задает функцию σ, таблица выходов – λ. Каждому столбцу таблицы поставлено в соответствие одно состояние из множества А, каждой строке – один входной сигнал из множества Z. На пересечении строки и столбца в таблице переходов, записывается состояние as, в которое должен перейти автомат из состояния am, под действием входного сигнала zf, т.е. as = σ(am, zf). На пересечении строки и столбца в таблице выходов записывается выходной сигнал wg, выдаваемый автоматом в состоянии am при поступлении на его вход сигнала zf, т.е. wg = λ(am, zf). Автомат Мура задается одной отмеченной таблицей переходов, в которой каждому столбцу приписаны не только состояния am, но еще и выходной сигнал wg, соответствующий этому состоянию, где wg = λ(am).
Граф: Ориентированный граф, вершины которого соответствуют состояниям, а дуги – переходам между ними. Дуга, направленная из вершины am в вершину as, задает переход в автомате из состояния am в состояние as.
СКУ и СВФ являются аналитической интерпретацией таблиц переходов и выходов или графов ЦА. СКУ определяет функции переходов ЦА, а СВФ определяет функции выходов ЦА.
Каждое состояние ЦА интерпретируется как событие, соответствующее множеству переходов в это состояние: As(t+1) = v Zf(t)&Am(t). Для сокращения записи СКУ и СВФ опускают знаки конъюнкции и времени t в правой части уравнения.
Условие однозначности: означает, что для любой пары (am, zf) задано единственное состояние перехода as и единственный выходной сигнал wg, выдаваемый на переходе.
Условие полной определенности: означает, что для всех возможных пар (am, zf) всегда указано состояние перехода и выходной сигнал.
Билет №6
Задание ЦА на языке граф схем алгоритмов (ГСА) и построение на его основе СКУ и СВФ.
ГСА – ориентированный связный граф, содержащий одну начальную (А0), одну конечную (Ак) и произвольное конечное множество условных Х={x1,...,xl} и операторных А = {А1,…,Ам} вершин. Любой алгоритм должен начинаться и заканчиваться символами начальной и конечной вершин. Начальная вершина не имеет входов, конечная – выходов. Конечная, операторная и условная вершины имеют по одному входу, причем входящая линия может образовываться слиянием нескольких линий. Начальная и операторная вершины имеют по одному выходу, а условная – два выхода, помеченных символами 1 и 0. Операторной вершине сопоставляется вполне определенный оператор Ам, символизирующий некоторые действия Yt. Yt – подмножество множества Y={y1, y2,..., yn}, называемого множеством микроопераций. Разрешается в различных операторных вершинах запись одинаковых подмножеств множества Y. Внутри условных вершин записывается один из элементов множества X={x1, x2, ..., xl}, называемого множеством логических условий. Разрешается в различных условных вершинах запись одинаковых элементов множества Х.