Среди схем без обратной связи наибольшее распространение получили высокоимпендансные усилители на полевых транзисторах. Низкоимпендансные усилители применяются главным образом на СВЧ.
Низкоимпендансным усилителем принято называть усилитель с входным сопротивлением 50 Ом. Достоинством усилителя первого типа является возможность достижения минимального порога чувствительности , а недостатками : сравнительно низкий динамический диапазон , высокая чувствительность к действию электромагнитных помех, необходимость индивидуальной настройки. использование высокого входного сопротивления (единицы, десятки МОм) приводят к интегрированию сигнала во входной цепи, вызывает частотные искажения. При этом возрастает отношение сигнала к шуму первого каскада усилителя.
Хотя использование большого входного сопротивления помогает максимизировать отношение сигнал/шум в приемнике оптических сигналов, однако оно одновременно порождает неудобства, вызванные необходимостью осуществлять значительную по величине коррекцию.
Первое неудобство состоит в том, что коррекция должна быть индивидуально приспособлена для каждой схемы. Она не
может быть установлена заранее. Причина в том, что коэффициент усиления должен изменяться по закону: G(f) = G0· (1+j·2p·f·С·R), а значения Свх и Rвх изменяются от прибора к прибору от схемы к схеме и часто зависят от температуры.
В результате каждая схема должна настраиваться индивидуально.
Вторая проблема в том, что значительное изменение коэффициента усиления с частотой означает уменьшение динамического диапазона усилителя. Структурная схема этого типа предусилителя показана на рис. 2.2.
Рис. 2.2 Структурная схема высокоимпедансного усилителя.
Положительная обратная связь вводится для компенсации входной емкости. Величина сопротивления нагрузки рассчитывается по формуле:
Только входная емкость (Свх) берется компенсированной. Активный, как правило, фильтр K(jw), формирует требуемую частотную характеристику.
Схема с низким входным сопротивлением не нуждается в коррекции АЧХ.
Использование хорошего лавинного фотодиода с коэффициентом усиления М=20, и более гарантирует обеспечение режима детектирования, ограниченного дробным шумом.
Однако, это справедливо для фотодетектора на p-i-n - фотодиоде и увеличение шума в этом случае может быть значительным.
Структурная схема низкоимпедансного усилителя приведена на рис. 2.3
Рис. 2.3 Структурная схема низкоимпедансного усилителя
Такой усилитель требует только расчета сопротивления нагрузки Rн по известной, в общем случае, входной емкости и требуемой полосе частот:
Хотя входной импульс малой величины и обеспечивает большой динамический диапазон, тепловые шумы ограничивают возможности применения в системах связи.
Обычно предпочитают использовать усилитель с обратной связью. Его основное преимущество – отсутствие необходимости осуществлять какую – либо коррекцию. Шумы такого усилителя могут быть много меньше, чем у обычного усилителя напряжения без коррекции.
Трансимпедансный усилитель содержит цепь параллельной обратной связи (рис. 2.4)
Рис. 2.4 Структурная схема трансимпедансного усилителя.
Такой усилитель рассматривать как преобразователь фототокнапряжение. Его коэффициент преобразования, равный отношению:
, имеет размерность сопротивления. С сопротивлением передачи “трансимпедансом “ и связано название схемы 2.4. При достаточно большом (бесконечном) усилении в отсутствии обратной связи сопротивление передачи равно Rос. В отличии от схемы без обратной схемы, где резистор нагрузки имеет то же сопротивление передачи (Rн=Rос), нагрузка в виде трансимпедансного усилителя усиливает мощность. Благодаря действию обратной связи происходит снижение входного сопротивления и может исчезнуть необходимость высокочастотной коррекции, увеличивается динамический диапазон. Выигрыш в динамическом диапазоне примерно равен соотношению коэффициентов усиления при разомкнутой и замкнутой цепи обратной связи.Использование общей параллельной отрицательной обратной связи позволяет получить очень хорошую стабильность режимов работы по постоянному току всех транзисторов, а также одновременно осуществить коррекцию частотной характеристики ФПУ, выполненное применением данной структуры обеспечивает динамический диапазон на 10 дБ. больше, чем усилитель высокоимпедансный, при увеличении шумов примерно на 1дБ.
Основная проблема усилителей данного типа – обеспечение их устойчивости. Использование протяженной цепи обратной
связи, охватывающей усилитель с большим коэффициентом усиления и высоким входным импедансом, делает схему усилителя склонной к самовозбуждению на высоких частотах, вследствие возникновения положительной обратной связи через транзисторную емкость.
Чтобы избежать самовозбуждения, требуется тщательное, продуманное компоновка и эффективная экранировка элементов схемы. И так наименьшими шумами обладают высокоимпедансныеусилители с интегрированием во входной цепи. По динамическому диапазону на первом месте оказывается трансимпедансный усилитель, за ним следует низкоимпедансный и высокоимпедансный. По рабочему диапазону частот первенство принадлежит низкоимпедансному усилителю. В меньшем диапазоне частот возможно применение высокоимпедансного и особенно трансимпедансного усилителей.
Учитывая все достоинства и недостатки схем усилителей, выбираем схему трансимпедансного усилителя.
В данном дипломном проекте разрабатывается Фотоприемное устройство для короткой линии связи (1км.).
Предполагаем, что на выходе ФПУ находится профессиональный радиоприемник. ФПУ в нашем случае без системы автоматической регулировки усиления (АРУ), так как есть вероятность, что устройство АРУ будет откликаться на помеху. В результате приведенного анализа структурная схема ФПУ примет вид:
Рис. 2.5 Структурная схема фотоприемного устройства.
1. – предварительный усилитель
2. – оконечный усилитель
РПрУ – радиоприемное устройство
3. Выбор и обоснование принципиальной схемы предварительного усилителя ФПУ.
3.1 Выбор и обоснование принципиальной схемы предварительного усилителя ФПУ.
В соответствии со структурной схемой приведенной ранее, ФПУ конструктивно делится на два функционально независимых усилителя : предварительный и оконечный.
Рассмотрим предварительный усилитель. Основным требованием , при соблюдении прочих условий (заданной полосы пропускания) предъявляемых к предварительному усилителю является обеспечение заданного отношения сигнал/шум.
Динамический диапазон фотоприемного устройства по минимальному сигналу определяется собственными шумами ФПУ, которые состоят из шумов фотодиода и шумов усилителя.
От выбора типа транзистора , используемого во входном каскаде, зависит шум усилительной схемы.
Для требуемого частотного диапазона шумовые параметры биполярного транзистора (БП) и полевого транзистора (ПТ) соизмеримы, поэтому выбираем биполярный транзистор при использовании которого проще осуществить заданный частотный диапазон.
Шумовая эквивалентная схема входного каскада ФПУ представлена на рис.3.1.
iф~ - генератор фототока сигнала
iф,ш -генератор шумового фототока , создаваемого шумовой оптической мощностью.
iш,ф0- генератор шумового тока , создаваемого постоянной оптической мощностью.
iш,Rн – генератор шумового тока ,создаваемого эквивалентным сопротивлением нагрузки фотодиода по переменному току.
iш,БТ – генератор шумового тока ,создаваемого шумами БТ входного каскада.
Эти токи определяются из следующих выражений :
; (1) ; (2) ; (3) ; (4)где: Iф0-постоянный ток засветки
RIN=-155дБ/Гц – относительная интенсивность шума
– диапазон принимаемых частотК – постоянная Больцмана
Т – температура (в Кельвинах)
Постоянная оптическая мощность ,величина которая определяется исходной рабочей точкой на вольт-амперной характеристике лазера для получения минимальных нелинейных искажений (комбинационные искажения) и потерями в ВОК, падающая на фотодиод , создает фототок сигнала и фототок фоновой засветки , определяемыми постоянной оптической мощностью, определяется соотношением:
iф= l·Pсв/η·h·ν или iф=А·Рсв , А=l/η·h·ν,