* мощность Р = 0.1 кВт;
* рабочая частота f = 66 МГц;
* коэффициент усиления передающей антенны D = 8 дБ;
* высота фазового центра антенны от основания опоры Н = 127 м;
Согласно СанПин 2.2.4 / 2.1.8.056 - 96 примем следующий предельно допустимый уровень (ПДУ) напряженности поля Е: ПДУ = 4.5 в/м.
Расчет напряженности поля в окрестностях ИОРТПЦ
Напряженность поля для каждого из передатчиков ИОРТПЦ, всего их семь, рассчитывает компьютерная программа, которую мы написали в результате нашей научной работы на языке TURBOPASCAL 7.0. Программа разработана таким образом, что в нее входит четыре типа антенн: первый тип – антенная решетка с коэффициентом b, равным 2p; второй тип – антенная решетка с коэффициентом b, равным 1.3p; третий тип антенны – это полуволновой вибратор; четвертый тип определяет сам пользователь – вводит формулу функции F(a) для конкретной антенны. В программу вводятся исходные данные: мощность Pв кВт; коэффициент усиления передающей антенны D; высота фазового центра от основания опоры Н в м; R- расстояние от фазового центра опоры до точки наблюдения с высотой h от основания опоры, в м и количество точек, где были проведены измерения напряженности поля. Затем программа производит расчет и выводит на экран систему координат, где строится график зависимости напряженности поля, в мкВ/м, от расстояния, в км. Мы видим, что с увеличением расстояния от ретранслятора график убывает, а также на графике могут быть видны незначительные скачки излучения напряженности поля, это зависит от рельефа рассматриваемой местности. На некоторой высоте, где установлен передатчик, находится щит, который снижает излучение передатчика до некоторого расстояния r< 300 м. Так как в этом радиусе расположен пункт слежения за радио и телевещанием.
На рисунке 8 построен примерный график, который может изобразить нам компьютерная программа.
Расчет напряженности поля в близи зоны Усольского радиотелецентра
Напряженность поля в близи Усольского района рассчитывает компьютерная программа, написанная на языке TURBOPASCAL 7.0. В программу входит четыре типа антенн: первый тип - антенная решетка с коэффициентом b, равным 2p; второй тип - антенная решетка с коэффициентом b, равным 1.3p; третий тип - это полуволновой вибратор; четвертый тип определяет сам пользователь - вводит функцию F(a) для конкретной антенны. В данном случае используется антенна типа 3-х элементный волновой канал с круговой поляризацией, направленная на город.
Рис..9
На рис.9 представлена примерная карта города Усолья - Сибирского трансляции телепередач на город. Данные измерения напряженности поля указаны в таблице. График зависимости напряженности поля Ед, мВ/м от расстояния R, км, построен на рис. 10. Как мы видим, с увеличением расстояния от ретранслятора напряженность поля убывает. На графике максимальное расстояние 18 км.
Рис.10
Сравнение результатов измерения и расчетов Усольского радиотелецентра.
Таблица № 1.
Расстояние от ретранслятора, км | Напряженность поля, мкВ/м | |
Расчетные данные | Экспериментальные данные | |
2 | 4741,5 | 4466 |
2,4 | 3209,2 | 19952 |
2,5 | 2992 | 12590 |
4 | 1237,1 | 12045 |
5 | 767,9 | 3183 |
5,5 | 648 | 3980 |
6 | 537,8 | 2089 |
7 | 397,5 | 1351 |
8 | 305,6 | 1995 |
9 | 242,2 | 2339 |
11 | 162,9 | 229,5 |
15 | 93,6 | 890 |
В таблице указаны расчетные данные, которые рассчитала компьютерная программа и экспериментальные, которые были измерены специальным прибором. Если сравнить данные полученные в результате расчета и экспериментальные, то они несколько отличаются друг от друга. Экспериментальные данные больше, чем расчетные, это может зависеть от рельефа рассматриваемой местности. Также оказало влияние то, что в расчетах не учитывалась ДН передающей антенны в азимутальной плоскости.
ЗАКЛЮЧЕНИЕ
При выполнении данной работы были получены следующие результаты:
1) были изучены методы расчета напряженности поля;
2) была разработана программа, рассчитывающая напряженность электромагнитных волн, излучаемых телерадиопередатчиками, в зависимости от расстояния до опоры передающей антенны;
3) были рассчитаны значения напряженности поля вблизи ИОРТПЦ, также были рассчитаны значения нормированной суммарной напряженности, где санитарные нормы не нарушаются;
4) были рассчитаны значения напряженности поля вблизи Усольского телерадиопередающего центра и сделаны сравнения с экспериментальными данными.
ПРИЛОЖЕНИЕ
Приложение 1 – программа расчета напряженности поля.
uses crt,graph,omenu;
const f_fi= 1;
NBg = {blue}1;
NFg = {white}15;
HBg = {white}15;
HFg = {black}0;
BC = {black}0;
SC = {lightcyan}11;
col = 200;
delta_rm =90;
var
vf :text;
VMenu :OVMenu;
HMenu :OHMenu;
HVMenu :OHVMenu;
p,d,hb,em :real;
i,j,choice,errc,
a,x,Hmenu_choice,len :integer;
rm :longint;
ord :array[1..col] of real;
del :array[1..10] of real;
delstr,si,AStr,vstr :string;
ch,rk :char;
input_is :boolean;
{Процедурывводаданных}
procedure input_value(xi,yi:integer; var zn:real);
begin
vstr:='';
while rk<>#13 DO begin
rk:=readkey;
if (((rk>#47)and(rk<#58))or(rk=#46))and(len<10) then begin
vstr:=vstr+rk;
len:=length(vstr);
gwritexy(xi+len,yi+1,rk,3,2);
end;
end;
val(vstr,zn,errc);
end;
procedure input;
begin
gwritexy(1,5,'Мощность: ',3,2); input_value(11,4,p); readln;
gwritexy(1,6,'К. у. антенны: ',3,2); input_value(1,6,d); readln;
gwritexy(1,7,'Высотапередающейантенны: ',3,2); input_value(1,7,hb); readln;
end;
{Функция выводит осн. меню на экран и возвращает номер выбранного пункта меню}
Function ddt:integer;
begin
HVMenu.init;
gwritexy(0,1,'',0,0);
HVMenu.SetHorItems(00,00,80,01,NBg, NFg,HBg,HFg,BC,SC,1,1,BorderOn,ShadowOff,' File | Антенна ');
HVMenu.SetVerItems(01,00,01,10,03,NBg,NFg,HBg,HFg,BC,SC,4,1,BorderOn,ShadowOff,' Данные | Выход ');
HVMenu.SetVerItems(2,6,01,29,04,NBg,NFg,HBg,HFg,BC,Sc,
4,1,BorderOn,ShadowOff,
' Ант. решетка №1 - 1,3 | Ант. решетка №2 - 2 | Диполь ');
HMenu.EraseOK:=False;
X:=HVMenu.MenuResult(false,true);
ddt:=x;
end;
{Функции расчета напряженности}
function f_alfa:real;
begin
case choice of
1: f_alfa:=(1+2*cos(1.3*pi*sin(arctan((hb)/rm))))/3;
2: f_alfa:=(1+2*cos(2*pi*sin(arctan((hb)/rm))))/3;
3: f_alfa:=(cos(pi/2*sin(arctan((hb)/rm)))/cos(arctan((hb)/rm)));
end;
end;
function Rb:real;
begin
rb:=rm/sin(arctan(hb/rm));
end;
function E2:real;
begin
E2:=30*p*d*sqr(f_alfa)*sqr(f_fi)/sqr(Rb);
end;
{Заполнениемассиваординат}
procedure ordinates;
begin
rm:=1;
for i:=1 to col do
begin
rm:=rm+delta_rm;
ord[i]:=1000*SQRT(E2); {х1000, т.к. ед. изм. - мВ/м}
end;
end;
{Максимальное значение напряженности}
procedure E_maximum;
var i:integer;
max:real;
begin
Max:=ord[1];
if col>1 then
for i:=2 to col do
if ord[i]>Max then Max:=ord[i];
if max=0 then max:=1;
Em:=max;
end;
{Сохранение результатов расчета в файл "results.txt"}
procedure ToFile;
begin
assign(vf,'results.txt');
rewrite(vf);
rm:=0;
for i:=1 to col do begin
rm:=rm+delta_rm;
writeln(vf,rm,' m',' - ',ord[i]:0:5,' mV/m');
end;
end;
{Инициализацияграфики}
procedure grinit;
var
grDriver: Integer;
grMode: Integer;
ErrCode: Integer;
begin
grDriver := Detect;
InitGraph(grDriver, grMode,'c:\bp\bgi');
ErrCode := GraphResult;
if ErrCode <> 0 then
Writeln('Graphics error:', GraphErrorMsg(ErrCode));
end;
procedure drawcoords; {Осикоординат}
begin
setcolor(darkgray);
{Oy} line(100,445,100,30); line(99,445,99,30);
line(99,30,96,35); line(100,30,103,35);
outtextxy(25,23,' Е, мВ/м');
{Ox} line(95,440,515,440); line(95,441,515,441);
line(515,440,510,437);line(515,441,510,444);
outtextxy(525,445,'R, м');
end;
procedure drawgrid;{Сетка}
begin
setcolor(lightgray);
{Горизонтальная}
j:=40;
for i:=1 to 10 do
begin
line(100,440-j,500,440-j);
j:=j+40
end;
{Вертикальная}
j:=round(80/ln(1.91));
for i:=1 to 6 do
begin
line(100+round(j),440,100+round(j),40);
j:=j+round(80/ln(i+1.8))
end;
end;
procedure values;{Разметкасетки}
begin
{По вертикали}
del[1]:=em/10; {Цена деления}
for i:=2 to 10 do
del[i]:=del[1]+del[i-1];
setcolor(darkgray);
outtextxy(90,445,'0');
j:=40;
for i:=1 to 10 do
begin
str(del[i]:0:1,delstr);
outtextxy(90-length(delstr)*8,438-j*i,delstr)
end;
{Погоризонтали}