Если в последнем определении не учитывать операцию математического ожидания, то получим оценку спектральной плотности мощности, которая называется выборочным спектром :
Хотя выборочный спектр не является состоятельной оценкой истинной спектральной плотности мощности, эта оценка может быть использована если выполнять некоторого рода усреднение или сглаживания. На использовании этой оценки основан классический периодограммый метод определения спектральной плотности мощности.
1.3. Классические методы спектрального анализа.
1.3.1 Введение
Оценки СПМ, основанные на прямом преобразовании данных и последующем усреднении, получили название периодограмм. Оценки СПМ, для получения которых по исходным данным сначала формируется корреляционные оценки, получили название коррелограммных методов спектрального оценивания.
При использовании любого метода оценивания СПМ пользователю приходится принимать множество компромиссных решений, с тем, чтобы по конечному количеству отсчетов данных получать статистически устойчивые спектральные оценки с максимально возможным разрешением. К этим компромиссным решениям относятся, в частности, выбор таких функций окна для взвешивания данных и корреляционных функций и таких параметров усреднения во временной и в частотной областях, которые позволяют сбалансировать требования к снижению уровня боковых лепестков, выполнению эффективного усреднения по ансамблю и к обеспечению приемлемого спектрального разрешения. Устойчивые результаты (малые спектральные флюктуации) и хорошая точность (малое смещение относительно истинных спектральных значений на всех частотах) достижимы только тогда, когда произведение TB, где Т - полный интервал записи данных, а B - эффективное разрешение по частоте, значительно превышает единицу. Все эти компромиссы можно количественно охарактеризовать в случае гауссовских процессов, для которых подробно теоретически изучены статистические характеристики классических спектральных оценок. Однако выбор конкретного метода спектрального оценивания в случае негауссовских процессов зачастую обосновывается только экспериментальными данными. Да и выбор функции окна очень часто основывается на данных экспериментальных, а не теоретических исследований.
1.3.2. Окна данных и корреляционные окна в спектральном анализе.
Окна представляют собой весовые функции, используемые для уменьшения размывания спектральных компонент, обусловленного конечностью интервалов наблюдения. Так, можно считать, что воздействие окна на массив данных (как мультипликативной весовой функции) состоит в уменьшении порядка разрыва на границе периодического продолжения. Этого добиваются, согласуя на границе возможно большее число производных взвешенных данных. Проще всего обеспечить такое согласование, сделав эти производные равными или, по крайней мере, близкими к нулю. Таким образом, вблизи границ интервала взвешенные данные плавно стремятся к нулю, так, что периодическое продолжение сигнала оказывается непрерывным вплоть до производных высших порядков.
С другой стороны, можно считать, что окно мультипликативно воздействует на базисное множество так, чтобы сигнал произвольной частоты имел значительные проекции только на те базисные векторы, частоты которых близки к частоте сигнала. Оба подхода ведут, конечно, к одинаковым результатам.
1.3.3. Периодограммные оценки Спектральной Плотности Мощности.
Пренебрегая операцией вычисления математического ожидания и полагая, что конечное множество данных содержит N отсчетов, получаем выборочный спектр
который может быть вычислен по конечной последовательности данных. Однако поскольку была опущена операция математического ожидания, эта оценка будет неустойчивой или несостоятельной. И для сглаживания применяется что-то вроде псевдоусреднения по ансамблю. Существует три различных типа сглаживания быстрых флюктуаций спектра.
Первый метод заключается в усреднении по соседним спектральным частотам. Если для вычисленный выборочный спектр на сетке частот
, то модифицированная оценка периодограммы на частоте может быть получена посредством усреднения в P точках с каждой стороны от этой частотыОбобщением этого подхода является обработка выборочного спектра с помощью фильтра нижних частот с частотной характеристикой
. В этом случае модифицированную периодограмму можно записать в виде свертки частотной характеристики фильтра нижних частот и самого выборочного спектраВторым методом сглаживания выборочного спектра является усреднение по псевдоансамблю периодограмм за счет деления последовательности из N отсчетов данных на P неперекрывающихся сегментов по D отсчетов в каждом, так что DP<N (называемым периодограмма Бартлетта). Тогда p-ый сегмент будет состоять из отсчетов
, где n=0,1,..,D-1,p=0,1,..P-1. Для каждого сегмента независимо вычисляется выборочный спектр в диапазоне частотДалее на каждой частоте, представляющей интерес, P отдельных немодифицированных периодограмм усредняются, с тем чтобы получить окончательную оценку:
Математическое ожидание и дисперсия даются следующими выражениями:
Из выражения для дисперсии видно, что устойчивость спектральной оценки Бартлетта улучшается как величина, обратная числу сегментов P.
Третьим и одним из самых эффективных методов является метод периодограмм Уэлча. Основное отличие от периодограммы Бартлетта состоит в том, что здесь используется окно данных и осуществлено перекрывающееся сегментирование последовательности отсчетов. Применение окна данных дает незначительное ухудшение разрешения по частоте, так как сам спектр окна вносит погрешности в результирующий спектр, однако удается достичь уменьшения влияния боковых лепестков спектра прямоугольного окна, которое косвенно применяется при сегментировании последовательности данных. Целью перекрытия сегментов является увеличение числа усредняемых сегментов и тем самым уменьшение дисперсии оценки спектральной плотности мощности. Сам метод состоит в следующем. Пусть дана запись комплексных данных
, которая разбивается на число сегментов D со сдвигом S отсчетов между соседними сегментами, тогда взвешенный p-ый сегмент будет состоять из отсчетов, где n = 0,1..D-1, p = 0,1..P-1, P=[(N-D)/S+1]. А выборочный спектр взвешенного p-ого сегмента в диапазоне частот , гдеИ окончательный вид периодограммы Бартлетта приобретает вид :
Среднее и дисперсия оценки выглядят следующим образом (доказательство первого соотношения в приложении А):
При использовании перекрытия соседних сегментов можно сформировать большее число псевдореализаций, чем в методе Бартлетта, а это уменьшает величину дисперсии периодограммы Уэлча, хотя порядок имеет тот же самый. Экспериментальные результаты приведены в соответствующем разделе.
1.3.4. Коррелограммные оценки Спектральной Плотности Мощности.
Альтернативным методом является коррелограммный метод. Косвенный метод основан на использовании бесконечной последовательности значений данных для расчета автокорреляционной последовательности, преобразование Фурье которой дает искомую СПМ. В отличии от прямого метода, который основан на вычислении квадрата модуля преобразования Фурье для бесконечной последовательности данных с использованием соответствующего статистического усреднения. Показано, что результирующая функция, получаемая без использования такого усреднения и называемая выборочным спектром, оказывается неудовлетворительной из-за статистической несостоятельности получаемых с ее помощью оценок, поскольку среднеквадратичная ошибка таких оценок сравнима по величине со средним значением оценки.