Смекни!
smekni.com

Дискретизация и квантование изображений (стр. 13 из 16)

На pис. 4.16,а приведен снимок, сделанный камерой, двигавшейся в процессе съемки. Камера двигалась в горизонтальном направлении, и хорошо заметно, что из-за этого мелкие надписи стали совершенно неразличимыми. На рис. 4.16,6 показан тот же снимок после восстановления вышеописанным методом; смазывание за счет сдвига оставило в энергетическом спектре характерные признаки, которые были автоматически распознаны и применены при создании фильтра, восстанавливающего изображение методом уравнивания энергетических спектров. После восстановления текст стал вполне разборчивым. Дальнейшие сведения об этом методе восстановления изображений можно найти в работе [42].

4.4.4. Замечания о восстановлении изображений в яркостной и плотностной областях

Все рассмотренные образцы изображений были искажены в пространстве яркостей либо моделированием характеристической кривой пленки на ЭВМ, либо при проведении стационарной съемки в реальных условиях, как снимок рис. 4.16. Однако восстановление изображений проводилось в пространстве плотностей, связанных с яркостями логарифмической зависимостью, как было показано выше. Во-первых, это, очевидно, связано с предположением о линейности, выраженным в виде равенства (4.38). Во-вторых, из практических соображений, относящихся к качеству изображений, восстановление изображений удобнее проводить в пространстве плотностей, а не в пространстве яркостей, где необходимо учитывать соотношение (4.37). Диапазон изменения яркости составляет обычно 2—3 порядка, и в тех местах изображения, где яркость изменяется резко, могут просматриваться боковые лепестки характеристики восстанавливающего фильтра. Динамический диапазон .изменения плотности гораздо меньше одного порядка, и подобный эффект здесь не столь опасен. В обширных работах Кэннона [42] и Коула [21] показано, что изображения, восстановленные в пространстве плотностей, обладают благоприятными для зрения свойствами. Таким образом, предположение о линейности, связанное с равенством (4.38), из практических соображений оказывается более предпочтительным.

4.4.5. Нелинейные методы восстановления изображений

С позиций цифровой обработки сигналов все рассмотренные методы сводятся к линейной фильтрации сигналов с применением быстрых преобразований Фурье. Из этого, конечно, не следует, что построение эффективной системы обработки сигналов является тривиальной или несложной задачей. При оптимизации методов фильтрации сигналов и соответствующих машинных программ может потребоваться много труда и изобретательности. Тем не менее, основополагающие принципы фильтрации относятся к области линейной обработки сигналов, и их легко найти вработах по классической цифровой обработке сигналов.

Практические исследования, однако, показывают, что линейная обработка имеет недостатки. Во-первых, реальные изображения обладают рядом свойств, которые не учитываются при линейной обработке. Например, яркости точек изображения всегда положительны, а в схеме с линейной обработкой могут появляться отрицательные числа, связанные с боковыми лепестками характеристики восстанавливающего фильтра. Во - вторых, линейная обработка является лишь приближением к оптимальной обработке, так как средства для записи изображений, такие, как кинопленка, в принципе нелинейны. Поэтому представляют интерес методы повышения резкости изображений, в которых учитывается такая нелинейность.

При нелинейном восстановлении изображений (как почти во всех операциях, связанных с нелинейностями) основная трудность заключается в объеме вычислений. В нелинейных системах эффективность вычислений не такая высокая, как при линейной обработке методом БПФ. В силу этого из всех предлагавшихся методов нелинейного восстановления изображений лишь немногие когда-либо применялись для обработки крупных изображений, так как при большом количестве отсчетов число вычислительных операций чрезмерно возрастает. Решения подобных проблем, по-видимому, b большей степени связаны с математическим анализом, чем с цифровой обработкой сигналов, и поэтому данный раздел будет довольно коротким.

Один из практически реализуемых нелинейных методов относится к восстановлению изображений в пространстве плотностей с учетом предположений, связанных с равенством (4.38). Если яркости искаженного изображения перевести в плотности путем логарифмирования, а затем скорректировать изображение с помощью БПФ и результат пропотенцировать, то получится система с нелинейными характеристиками, но реализованная на основе БПФ. К тому же яркости конечного изображения здесь всегда положительны. Теоретическим основанием подобного метода являются теория гомоморфной обработки сигналов, а также мультипликативная модель процесса формирования изображения [19]. Логарифмическая пространственная фильтрация, по-видимому, согласуется с моделью системы человеческого зрения, представленной в первом разделе главы.

Метод Фридена [43] также гарантирует отсутствие отрицательных значений яркости в восстановленном изображении, которое определяется путем решения системы нелинейных уравнений

g(j, k) = h( j , k) * * ехр [ - 1+ h( j, k) * *

( j, k ) +
] +

+ exp[ -1 +

( j, k) ] ,

P =

, (4.54)

а исправленное изображение описывается равенством

(4.55)

где символ ** обозначает двумерную дискретную свертку, а Р — полная энергия исходного изображения. Таким образом, решение оказывается положительным и ограниченным по величине. Однако решить эту систему непросто. Вычисление сверток, фигурирующих в соотношениях (4.54) и (4.55), методом БПФ не очень помогает, поскольку основная трудность заключается в решении системы уравнений относительно неизвестных

и
(множителей Лагранжа в задачах оптимизации). Данный метод был опробован на очень малых изображениях (размером 50х50 отсчетов) в случае разделимых аппаратных функций, причем для решения нелинейных уравнений применялась итерационная процедура Ньютона - Рафсона. При увеличении размеров снимка решение нелинейных уравнений связано с большими трудностями. Был также предложен, но не реализован практически метод прямой оптимизации [2].

Метод нелинейного восстановления изображений, предложенный Фриденом, исходит из предположений о положительности и ограниченности отсчетов изображения. Нелинейные методы могут также основываться на анализе нелинейности записывающих средств. В работах [40, 44] описан байесовский подход к восстановлению изображений, записанных с помощью нелинейных устройств. Результат обработки получается в виде решения нелинейного матричного уравнения. 0пределение этого решения при большом числе переменных, описывающих квантованное изображение, связано c выполнением множества вычислений, а роль цифровой обработки сигналов сводится к выполнению операций свертки [44]. Такой метод применялся для коррекции изображений размерами до 512х512 отсчетов.

Задача (восстановления изображения в общем случае, т.е. с учетом нелинейности записи и условия, что отсчеты яркости должны быть ограниченными и положительными, сводится к задаче нелинейного программирования [2]. Однако возможности современной техники не позволяют решить в общем случае задачу нелинейного программирования при том числе переменных, которое характерно для изображений, представленных в цифровом виде. Были разработаны и опробованы на «маленьких изображениях (размером, например, 32х32 отсчета) специальные алгоритмы, основанные на симплексном методе и относящихся к нему понятиях математического программирования. К большим снимкам эти алгоритмы еще не применялись. Вообще повышение резкости нелинейными методами является той областью цифровой обработки изображений, где далеко не все сделано.

4.4.6. Повышение резкости изображений с характеристиками,

изменяющимися в пространстве

В предыдущих разделах была показана роль, которую играют при восстановлении изображений операции свертки и двумерная цифровая фильтрация. Во всех методах требовалось, чтобы законы формирования изображения обладали свойством пространственной инвариантности. Если же процесс формирования изображения не является пространственно - инвариантным, то формула (4.34) принимает вид

(4.56)

и при обращении ее в дискретную форму в ней не появится дискретной свертки. К сожалению, в ряде интересных случаев формирование изображений подчиняется пространственно - нестационарньпм уравнениям, как, например, при неравномерном движении камеры или при наличии оптических аберраций.