Смекни!
smekni.com

Цифровая обработка сигналов (стр. 2 из 11)

Учитывая вышеизложенное и формулы (1.7), (1.9) можно утверждать, что левая полуплоскость переменного p = d + jw отображается на плоскость единичного круга переменного z = x + jy, правая полуплоскость - на плоскость z за пределами единичного круга.

Подстановка (1.9) в z - изображение сигнала приводит к спектру этого сигнала, подстановка (1.7) дает изображение по Лапласу.

Пример. Определить спектр и построить графики модуля и аргумента спектральной плотности сигнала x(nT) = {a ; b} (Рис. 1.5, а).

Решение.

Z - изображение сигнала согласно (1.8)

X(Z) =

x(nT) Z-n = x(0T) Z-0 + x(1T) Z-1 = a + bZ-1

Отсюда подстановкой (1.9) определяем спектр сигнала

X(jw) = a + be-jwT.

Графики модуля и аргумента спектральной плотности приведены на рисунке 1.6, а, б на интервале частот [0 ; wд].

Вне интервала частот [0 ; wд] частотные зависимости повторяются с периодом wд.

1.5 Основные теоремы Z - преобразования.

Перечислим без доказательства теоремы z - преобразования, которые потребуются в последующих разделах.

1. Теорема линейности.

Если x(nT) = ax1(nT) + bx2(nT) ,

то X(Z) = a X1(Z) + bX2(Z).

2. Теорема запаздывания.

Если x(nT) = x1(nT - QT) ,

то X(Z) = X1(Z) Z-Q.

3. Теорема о свертке сигналов.

Если X(nT) =

x1(kT) x2(nT - kT) ,

то X(Z) = X1(Z) X2(Z).

4. Теорема об умножении сигналов.

Если x(nT) = x1(nT) x2(nT) ,

то X(Z) =

X1(V) X2(
) V-1 dV,

где V, Z - переменные на плоскости Z.

5. Теорема энергий (равенство Парсеваля).

x2(nT) =
X(Z) X(Z-1) Z-1 dZ.

Z - преобразование дискретных сигналов имеет значение равное значению преобразования Лапласа непрерывных сигналов.

1.6. Дискретное преобразование Фурье.

Если сигнал ограничен во времени значением tu , а его спектр - частотой wв , то он полностью характеризуется конечным числом отсчетов N как во временной, так и в частотной областях (Рис. 1.7, а, б) :

N = tu/T - во временной области, где T = 1/fд ,

N = fд/f1 - в частотной области, где f1 = 1/tu .

Дискретному сигналу соответствует периодический спектр, дискретному спектру будет соответствовать периодический сигнал. В этом случае отсчеты X(nT) = {X0 ; X1 ; … XN-1} являются коэффициентами ряда Фурье периодической последовательности X(jkw1), период, который равен wд. Соответственно, отчеты X(jkw1) = {X0 ; X1 ; … XN-1} являются коэффициентами ряда Фурье периодической последовательности X(nT), период, который равен tu.

Связь отсчетов сигнала и спектра устанавливается формулами дискретного преобразования Фурье (ДПФ). Формулы ДПФ следуют из формул Фурье для дискретных сигналов (1.5), если непрерывную переменную w заменить дискретной переменной kw1, то есть

w® kw1 , dw®w1.

После замены переменной в (1.5) получим

X(jkw1) =

x(nT)
,

x(nT) =

X(jkw1)
.

Отсюда после подстановки w1 = wд/N, T = 2p/wд формулы ДПФ принимают окончательный вид

X(jkw1) =

x(nT)
- прямое ДПФ ,

x(nT) =

X(jkw1)
- обратное ДПФ (1.10)

Сигнал с ограниченным спектром имеет, строго говоря, бесконечную протяженность во времени и, соответственно бесконечное число отсчетов и непрерывный спектр. Спектр останется непрерывным, если число отсчетов сигнала ограничить конечным числом N. Формулы (1.10) в этом случае будут выражать связь между N отсчетами дискретного сигнала и N отсчетами его непрерывного спектра, который можно полностью восстановить по его отсчетам.

Пример. Определить отсчеты спектра сигнала на Рис. 1.5, а.

Здесь N = 2 поэтому X(jkw1) =

x(nT) e-jpkn следовательно

X(j0w1) =

x(nT)e-j0 = x(0T) + x(1T) = a + b

X(j1w1) =

x(nT)e-jpn = x(0T) e-j0 + x(1T) e-jp = a - b

график отсчетов спектра приведен на Рис. 1.5, б, где w1 = wд/N = 0,5wд.

Сигнал с конечным числом отсчетов N имеет спектр, который повторяет с конечной погрешностью спектр сигнала с бесконечным числом отсчетов : спектры совпадают на отсчетных частотах kw1 и отличаются на других частотах. Отличие спектров тем меньше, чем больше N. В самом деле, реальные сигналы обладают конечной энергией и, следовательно, начиная с некоторого номера отсчета остальными номерами можно пренебречь ввиду их малости, что не окажет заметного влияния на спектр сигнала.

Пример. Осуществить дискретизацию экспоненциального импульса X(t) = Ae-at = 1 e-10t и сравнить спектры исходного и дискретного сигналов.

Решение.

График сигнала X(t) представлен на Рис. 1.8

Пусть T = 0,02с. В этом случае плавным соединением отсчетов сигнала (штриховая линия на Рис. 1.8) сигнал восстанавливается удовлетворительно хотя заметны искажения в окрестности точки t = 0, поэтому ошибки наложения будут некоторым образом влиять на спектральные характеристики.

Пусть tu = 0,4с. В этом случае

N = tu/T = 20.

Расчет спектра по формуле прямого ДПФ в точке w = 0 (k = 0) запишется так

X(j0w1) = 1,0 + 0,8187 + 0,6703 + 05488 + 0,4493 + 0,368 + 0,3012 + 0,2466 + 0,2019 + 0,1653 + 0,1353 + 0,1108 + 0,09072 + 0,07427 + 0,06081 + 0,04979 + 0,04076 + 0,03337 + 0,02732 + 0,02237 = 5,41

Истинное значение спектра в точке w = 0 можно определить зная спектр аналогового экспоненциального импульса

Xa(jw) =

, следовательно Xa(j0) =
= 0,1.

чтобы сравнить спектры дискретного и непрерывного сигналов, дискретный спектр необходимо денормировать умножением на T, так как формулы Фурье для дискретных сигналов применяются в нормированном виде. Поэтому

X(jow1) = 5,41 T = 5,42Ч0,02 = 0,1082.

Таким образом совпадение спектров Xa(jw) и X(jw) в точке w = 0 вполне удовлетворительное. Некоторая неточность объясняется влиянием ошибок наложения.

Уместно заметить, что выбор шага дискретизации достаточно контролировать в точках максимальной крутизны исходной функции X(t). В рассмотренном примере такой точкой является момент времени t = 0.

В заключение отметим, что формулы ДПФ упрощают расчетные процедуры по взаимному преобразованию сигналов и их спектров, что особенно важно для технических систем, функционирующих В реальном масштабе времени. В этих случаях применяется алгоритм быстрого преобразования Фурье (БПФ), основанный на формулах ДПФ. Ускоренная процедура расчетов по алгоритму БПФ достигается за счет исключения повторных арифметических операций, характерных для расчетов по формулам ДПФ.

2. Дискретные цепи.

2.1 Разностное уравнение и дискретная цепь.

Непрерывный сигнал на входе линейной системы x(t) и соответствующий сигнал y(t) на выходе связаны дифференциальным уравнением. Замена непрерывной переменной t на дискретную переменную nT приводит к замене дифференциального уравнения разностным уравнением. Каноническая форма разностного уравнения общего вида, учитывающая в явном виде наличие в системе как прямых, так и обратных связей, запишется так

y(nT) =

am x(nT - mT) +
y(nT -
), (2.1)

где (M + 1) - число прямых связей,