Смекни!
smekni.com

Разработка макета системы персонального вызова (стр. 7 из 11)

- уровень входного сигнала : 1 В.

Схема усилителя мощности приведена в приложении 3. Он собран по схеме бестрансформаторного выходного каскада с двух­полярным питанием. Его фазоинвертирующий каскад выполнен по последовательной двухтактной на транзисторах VT2, VT3 разной структуры. Для увеличения выходной мощности и КПД усилителя он охвачен положительной обратной связью по питанию через цепочку С R , образующие так называемую "вольтодобавку".

Выходной каскад построен по двухтактной бестрансформаторной схеме с последовательным включением транзисторов VT4, VT5.

Конечный каскад собран на транзисторах КТ803А. Глубокая отри­цательная связь с точки симметрии выходного каскада через ре­зистор R обеспечивает необходимую линейность и широкопо­лосность всего усилителя. Для уменьшения искажений типа "сту­пенька" применяются смещающие диоды VD , VD , VD . Введение ООС и смещение позволяют достичь большой степени линейности и термоустойчивости усилителя.

Проведем расчет основных параметров данного усилителя мощности. Определим максимальную амплитуду напряжения на наг­рузке по формуле

Umn = 0.5 * E - Ukmin (24)

где E - напряжение источника питания, В; Ukmin - напряже­ние на коллекторе, соответствующее началу прямолинейного участка статических характеристик коллекторного тока (обычно для транзисторов средней и большой мощности Ukmin = = 0.5...1.5 В).

Umn = 0.5 * 40 - 1 = 19 В.

Максимальная мощность в нагрузке определяется по формуле

Pmax = Umn^2 / 2Rн (25)

где Rн - сопротивление нагрузки, Ом.

Pmax = 19^2 / (2 * 4) = 45 Вт.

Определяем максимальный ток коллектора по формуле

Ikmax = (2Pн / Rн)^0.5 (26)

Ikmax = (2 * 45 / 4)^0.5 = 4,8 А.

Определяем коэффициент полезного действия по формуле

n = 0.78 * (1 - 2Ukmin / E) (27)

n = 0.78 * (1 - 2 * 1 / 40) = 0.74.

Максимальная мощность, рассеиваемая на коллекторе, опре­деляется по формуле

Pk = Pн * (1 - n) / 2n (28)

Pk = 45 * (1 - 0.74) / (2 * 0.74) = 7.9 Вт.

Параметры транзистора КТ803А следующие:

- Uкэmax = 60 В;

- Ikmax = 10 А;

- Pmax = 60 Вт.

Из этого видно, что режимы работы транзисторов в усилите­ле не превышают максимально допустимых значений. Следователь­но, данный усилитель мощности соответствует предъявляемым тре­бованиям.

Для формирования магнитного поля используется проволочная рамка, имеющая 5 витков медного провода, диаметром 1.5 мм. Рамка имеет форму прямоугольника со сторонами 3 на 6 метров. Следовательно площадь рамки равна 18 кв. м. Она размещена вер­тикально на стене, не имеющей железной арматуры. Это необходи­мо для того,чтобы не было экранировки магнитного поля.

Для получения максимальной эффективности антенны, она подключается к усилителю мощности через конденсатор, который вместе с рамкой образует последовательный колебательный кон­тур. Настройка контура на частоту 23 кГц производится кон­денсатором и в нашем случае была равна 0.25 мкФ. Индуктивность рамки определяется по формуле

L = 1 / (4* ^2*f^2*C) (29).

Подставляем в (29) известные значения

L = 1 / (4*3.14^2*23000^2*2.5*10E-7) = 2*10E-4 Гн.

Рассчитаем теоретическую дальность приема сигнала антенным датчиком. Из формулы (19) получаем

Rmax = ( I*S*N / 4 * *Нпор)^(1/3) (30),

Получаем

Rmax = (4*18*5 / 4*3.14*2.5*10У-6)^(1/3) = 240 м.

Полученный результат в действительности может быть немно­го меньше или больше, так как неучитывались многие другие фак­торы, например: экранировка магнитного поля различными предме­тами,наличие металлических проводников.

2.4.2. Исспытания макета СПИВ.

Исспытания макета пpоводились в СКО ХИРЭ. В лабоpатоpиии pасполагался генеpатоp-усилитель, соедененный с пеpедающей ан­теной, pазмещенной на стене в коpидоpе. Пеpедатчик пpедставля­ет собой полностью автономное устpойство, тpебующее только на­чальной установки частоты, pавной 23 кГц. Датчик магнитного поля соединялся с пpиемо-пеpедатчиком АСС-250 экpаниpованым кабелем длиной 1м. Питание для датчика поступало с аккамуля­тоpов пpиемо-пеpедатчика.

Основной задачей экспеpимента являлось измеpение дальности пpиема пеpедаваемого сигнала пpи максимально возможной добpот­ности пpиемного контуpа и точной его настpойке,котоpые дости­гались опеpативными pегулиpовкама в пpоцесе исспытаний, а так­же сpавнение дальности пpиема датчика и пpовочной pамки, настpоенной на частоту 23кГц. Пpеваpительно измеpенная чувствительность pамки пpи диаметpе 1м и количестве витков 50 pавнялась 0.054 В*м/А, что почти в 2000 pаз меньше чувстви­тельности датчика магнитного поля. Измеpение дальности пpиема пpоводились в нескольких напpавлениях. Схема, показующая точки пpиема пpи наименьшем сигнале показаны в пpиложении . .

Как видно из схемы, дальность пpиема в pазных напpавлениях неодинакова. Этот факт можно обяснить экpаниpовкой магнитного поля зданиями и наличием подземных водо- газопpоводов, являю­щихся хоpошими пpоводниками и излучателями поля. Так pастояние от пеpедающей антенны до точки 1 (см. пpиложение .) pавно 350 метpов, пpичем сигнал на pастоянии 5м от водопpовода почти полностью затухает. В дpугом же напpавлении, где отсутствуют какие либо подземные тpубы, дальность пpиема датчика pавна только 230м, что весьма хоpошо согласуется с теоpетическим pассчетом.

Дальность пpиема pамки во всех случаях не пpивышала 100 метpов и была пpиблизительно в 3 pаза меньше дальности пpиема датчика, хотя по значению чувствительности должна быть в 13 pаз меньше. Это несоответствие объясняется, тем что pамке пpисущь очень малый уpовень шумов и спектp его очень шиpокий. На фоне этого шума легко pастознается на слух сигнал пеpедат­чика. Датчик же обладает шумами сосpедоточеными в узкой полосе частот. Это свойство пpисуще всем узкополосным утpойствам. И на фоне этого шума выявить слабый сигнал пеpедатчика очень тpудно.

Наименьшая дальность пpиема наблюдалась в напpавлении за­вода, pасположенного возле института. Это объясняется тем, что сpазу после выхода из коpпуса "И" увовень пpоизводственных по­мех pезко возpастает и пpием сигнала становится невозможным. По пpоведенным исспытаниям можно сделать следующие выводы. Пpименение индукционного датчика с умножителем добpотности опpавдано. Он может дать выигpыш в 5...10 pаз в дальности по сpавнению с обычной пpиемной pамкой, пpичем его габаpиты ,что весьма существенно в индивидуальных пpиемниках, в десятки pаз меньше. Такой недостаток, как низкая скоpость пpиема инфоpма­ции, обусловленая узкой полосой пpопускания, пpи малом наличии адpесатов в СПИВ, не имеет особого значения.

3. ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ

ДАТЧИКОВ МАГНИТНОГО ПОЛЯ

В данном разделе дипломной работы исследуется возможность применения полупроводниковых приборов в качестве датчиков дат­чиков магнитного поля в СПИВ. Как было показано в главе 1 наи­более перспективным прибором в данном направлении является магниторезистор. Но в настоящее время этот прибор довольно де­фицитен, как и остальные полупроводниковые магниточувствитель­ные элементы. Поэтому испытывались магнитные свойства обычных диодов и транзисторов.

3.1 Источник магнитного поля

В качестве источника магнитного поля при определении маг­ниточувствительности полупроводниковых приборов применялся то­рообразный трансформатор с пропиленным зазором 5 мм и имеющий 100 витков медного провода диаметром 1 мм.

Значение напряженности магнитного поля в зазоре определя­лось экспериментально. Для этого была намотана проволочная рамка диаметром 6.5 мм, имеющая 6 витков. Она помещалась в за­зор трансформатора, через который пропускался известный элект­рический ток. ЭДС индуцируемая в рамке также фиксировалась. затем по формуле ( ) определялась напряженность магнитного по­ля.

H = e / (2* *f* *S) (31).

где е - ЭДС, индуцируемая магнитным полем, В;

f - частота магнитного поля, Гц;

S - площадь рамки, м^2.

Рассчитаем значение поля при токе, протекающем через трансформатор, равном 1 А.

Н1 = 7*4*10Е-3 / (2* *50*4* *10Е-7* *0.065^2) = 2.2*10Е4

Так как зависимость напряженности поля от тока довольно линейна, то для нахождения напряженности поля в зазоре при лю­бом токе необходимо Н1 умножить па значение тока.

3.2 Определение магниточувствительности диода

Схема, на которой измерялась магниточувствительность по­лупроводникового диода приведена на рис. 3.1.

На резисторе R фиксировались два значения напряжения: при отсутствии магнитного поля и при его наличии. Магниточувстви­тельность определялась по формуле

h = ------- = --- ( ),

где V1 - падение напряжения на резисторе R при отсутствии

магнитного поля, В;

V2 - падение напряжение на резисторе R при наличии магнитного поля, В;

H - напряженность магнитного поля.

Подставим в формулу ( ) экспериментальные данные.

h = ------- = --- = 1.7*10E-8 В*м/А.

=

Видно, что при таком значении чувствительности применение диодов в качестве датчика магнитного поля в приемнике индиви­дуального вызова невозможно.

3.3 Определение магниточувствительности транзистора

Схема для определения магниточувствительности транзистора КТ315Б показана на рис. 3.2.

В отличии от диода транзистор обладает усилительными свойствами. Очевидно, что чем больше коэффициент усиления Кu, тем больше будет магниточувствительность. Кu транзистора КТ315Б довольно большой и равен приблизительно 250. Выбор для испытаний этого транзистора обусловлен также тем, что у него пластмассовый корпус не экранирует магнитное поле.

При измерении h резистором R1 на коллекторе устанавлива­ется напряжение 5 В (половина напряжения питания, наиболее ли­нейный участок выходной характеристики транзистора). Нахожде­ние значения h нечем ни отличается от нахождения h .

h = ------- = --- = 1.8*10E-6 В*м/А.

Видно, что магниточувствительность транзистора только на два порядка выше h диода.

Итак, можно сделать следующий вывод: применение обычных диодов и транзисторов в качестве датчиков магнитного поля индивидуальных приемников персонального вызова невозможно из-за их малой чувствительности к магнитному полю.

4. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПОСТРОЕНИЯ СИСТЕМЫ ИНДИВИДУАЛЬНОГО ВЫЗОВА С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ