Смекни!
smekni.com

Использование CLV (Customer Lifetime Value) (стр. 1 из 2)

Использование CLV (Customer Lifetime Value)

Для многих компаний весь их бизнес вращается вокруг попыток понять, каких клиентов стоит удерживать, а каких нет. Это привело к тому, что менеджеры из самых различных сфер бизнеса ищут все более сложные способы измерить CLV (пожизненную ценность клиента), чтобы выделить самых перспективных клиентов с точки зрения будущих покупок.

CLV – концепция, приобретшая популярность в силу своей видимой очевидности и простоты. Действительно, если мы знаем, что, недополучив с данного клиента прибыль сейчас, мы приобретаем его "на всю жизнь", почему бы не дать ему немного "заработать" на нас? К сожалению, не все так просто. Хотя бы потому, что если мы не умеем получить "полной прибыли" с клиента сегодня, кто сказал, что ценность нашей услуги (без скидок за якобы "лояльность") так велика, что мы возьмем "недополученное" завтра? Как говорится, "гладко было на бумаге". О некоторых оврагах – эта статья. Если же взглянуть на идею сбора и анализа данных о наших клиентах с точки зрения нового маркетинга, то можно будет разглядеть и ее действительную пользу. Нужно только думать не о том, кому и за что дать дополнительную скидку, а о том, как, зная своих клиентов глубже конкурентов, улучшить свой продукт так, чтобы никаких скидок не приходилось бы давать вовсе.

Бизнес Роя Кардиффа - продажа по почтовым каталогам, причем, он отслеживает продажи по каждому клиенту. Недавно он решил сократить расходы и не рассылать впредь каталоги тем клиентам, вероятность покупки которыми в будущем минимальна.

Его клиентов можно разделить на три категории: те, кто совершил несколько небольших покупок в прошлом году; тех, кто сделал одну покупку, но на значительную сумму; и тех, отношения с которыми носят долговременный характер, но на непостоянной основе.

Который из сегментов должен быть удален из списка рассылки?

По мнению нескольких профессоров Wharton, подробно изучавших вопрос, легкого ответа нет, несмотря на все новые и все более сложные методы измерения так называемой "пожизненной ценности клиента", “Customer Lifetime Value” (далее - CLV) – текущей ценности вероятных будущих доходов, полученных от конкретного покупателя.

"Для многих компаний весь их бизнес вращается вокруг попыток понять, каких клиентов стоит удерживать, а каких нет", - говорит профессор по маркетингу из Wharton Питер Фэдер, автор книги Biases in Managerial Inferences about Customer Value from Purchase Histories: Intuitive Solutions to the Mailing-List Problem. "Это привело к тому, что менеджеры из самых различных сфер бизнеса ищут все более сложные способы измерить CLV, чтобы выделить самых перспективных клиентов с точки зрения будущих покупок".

Цель – не только определить таких клиентов, но и "достать" их через кросс-продажи, многоканальный маркетинг и другие тактики, все из которых привязаны к показателям по привлечению, удержанию и статистическим показателям, известным как RFM – время последней покупки, частота и денежная ценность.

"CLV сегодня популярен", - замечает профессор по маркетингу Wharton Ксавье Дриз, соавтор книги "A Renewable-Resource Approach to Database Valuation". Хотя CLV совсем не новое понятие (оно давно используется в банках при работе со счетами), концепция приобрела новую жизнь с широким распространением интернета, "которое позволяет компаниям при небольших затратах напрямую контактировать с людьми". CLV, по мнению Дриза, "рассматривает клиентов, как ресурс, из которого компании стремятся получить максимально возможный объем прибыли".

Однако многие компании вдруг осознают, что CLV, являющийся одним из компонентов CRM, - довольно трудноуловимый показатель. Во-первых, его сложно подсчитать с определенной долей точности, во-вторых, сложно использовать.

"Единственная цифра, в которой менеджер может быть уверен, - это текущая прибыльность клиента", - говорит профессор по маркетингу Wharton Джордж Дэй. "И тогда главным становится вопрос: теперь, когда есть вся информация, что с ней делать? Некоторые компании используют ее для разработки специальных программ для различных по своей ценности сегментов. В финансовой отрасли, например, клиенты получают разный уровень обслуживания, в зависимости от размера их счета. Но всегда есть риск, что, поступая так, вы можете обозлить других клиентов".

Более того, очень трудно предсказать, как долго клиент компании останется таковым или оценить его "потенциал роста", - говорит Дэй, - "Компании не знают, насколько прибыльны их клиенты".

Бросая кости

CLV – привлекательная концепция, но в силу ряда причина она часто трудно применима на практике, замечает профессор маркетинга Wharton Дэвид Белл в своей статье Seven Barriers to Customer Equity Management.

CLV, по словам Белла и других, лучше всего работает в отраслях, где высокие затраты на привлечение и удержание клиентов, таких как финансовые услуги, авиалинии и отели. "Он также полезен в ситуациях, где весь бизнес управляется небольшим количеством персонала, и где фирмы могут предлагать бонусы и скидки, чтобы повлиять на поведение клиентов", - замечает Белл. В качестве примера он приводит авиалинии, которые могут дать "ценному" клиенту свободное место в первом классе, что очень важно и приятно для пассажира, но почти ничего не стоит компании.

Сбор информации для CLV может дать определенным компаниям целый ряд преимуществ. Например, индивидуальные данные, собранные отелем помогут определить лучших клиентов и предложить им кросс-продажи других продуктов. Они позволяют маркетологам компании обратиться к определенной группе за информацией. Используя обратную связь, компания может принимать более обоснованные решения, по поводу более эффективного распределения маркетинговых ресурсов. Предположим, собранная информация показывает, что значительное количество посетителей отеля прибывают из Нью-Йорка, и их средний возраст около 50 лет. Отель может использовать эти данные для более точного выхода на целевую аудиторию.

В качестве успеха CLV Белл приводит историю Казино Harrah’s. На базе информации, собранной по программе лояльности, Harrah’s теперь может точно сказать "кто приезжает в казино, куда направляется, зайдя внутрь, сколько времени сидят у разных столов и т.д. Это позволяет оптимизировать как конфигурацию столов в игровом зале, так и всю деятельность".

Другие приводят в пример здравоохранение и кредитные карты, прямой маркетинг и он-лайн рассылки, как направления, способные получить непосредственную выгоду от CLV, частично, потому что они напрямую контактируют с потребителями и легко могут отследить его обратную реакцию. Например, продавцы в фармацевтической отрасли могут использовать собранную информацию, чтобы решить, как часто обращаться к врачам для продвижения производимых их компанией лекарств.

В основном, говорит Дэй, CLV наиболее применим "когда у вас есть база данных с информацией о клиентах и трансакциях. Но если вы работаете, например, через торговые сети, и у вас нет прямого контакта с клиентами, тогда применить это показатель становится гораздо сложнее".

Теперь, когда маркетологи могут собрать более качественную информацию, чтобы определить жизненную ценность клиентов, как эту информацию использовать?

Ответ, по мнению исследователей, такой – "осторожно".

"Люди - все разные", - говорит Белл. "На индивидуальном уровне очень трудно предсказать поведение отдельного клиента. Легче предсказать поведение рыночных сегментов. Мы можем, например, сказать, что в среднем бизнесмены проведут “x” ночей в Хилтоне. Но если мы попытаемся спрогнозировать, сколько ночей проведет в отеле м-р Джоунс, то проблема значительно усложнится".

Одной из трудностей при внедрении CLV, добавляет Белл, является то, что модели прогноза слишком чувствительны к предположениям. Например, модели часто предполагают, как долго клиент сохранит отношения с компанией, и сколько он потратит. Однако некоторые из предположений могут быть неверны. "Просто потому, что я потратил в прошлом году $100, не означает, что и в этом году я потрачу $100", - говорит Белл. "Или, если клиент никак себя не проявляет, это означает, что он временно прекратил использовать продукт или ушел к конкурентам?"

В частности, проблема с оценкой капитализации интернет-компаний состояла в том, что "многие компании делали необоснованные предположения насчет того, сколько стоили их клиенты, сколько стоило их привлечь, и как долго они останутся клиентами в будущем", - замечает Белл. "Подсчет ценности клиентов в долларах очень чувствителен к этим крайне важным допущениям. Любая ошибка, которую вы допускаете, может оказаться фатальной. Иными словами, ваши оценки будут кардинально расходится с реальностью, если хотя бы одно из допущений было неверно".

"Однако многие компании уже используют тот или иной инструмент определения Вашей стоимости, чтобы понять, как к Вам относиться. Если я - обычный клиент, мой звонок поставят в очередь. Если нет – два гудка, и трубку снимает реальный менеджер. Но такой подход предполагает низкую мобильность людей. Вы распределяете их по разным корзинам, и они там остаются. Однако, может быть, если бы Вы лучше относились ко мне в начале, я бы стал более ценным клиентом".

В дополнение, когда фирмы оценивают своих клиентов, они делают выводы, на основе того, что знают. "Информации здесь всегда не хватает. Я же не знаю, чем Вы занимаетесь в других местах. Может быть, у нас Вы тратите $100 в год, а у наших конкурентов - $500", - говорит Белл. "Это недостаток методологии. Вы пытаетесь определить ценность людей, базируясь на информации, которую накопили в ходе его общения только с вами и ни с кем больше".

Какую бы модель не использовала компания, та может дать только точку отсчета в процессе принятия решений, добавляет Белл. "Интуицию и управленческий опыт никто не отменял".

Дэй привод в пример случай с одним производителем крупного оборудования, который выяснил, что обслуживание одного из клиентов не приносит прибыли. "Что делать? Клиент может быть неприбыльным, но на подобных рынках на одного клиента может приходиться до 15% всех продаж. Требуется определенная смелость, чтобы объявить, что вы не можете больше его обслуживать… А еще сложнее спрогнозировать перспективную ценность, ведь вы не знаете, как клиент поведет себя в будущем. Самый большой риск для компании – нечаянно отказаться от клиента, который мог бы стать прибыльным в будущем".