Центральным элементом всякой демографической модели является система соотношений между экзогенными и эндогенными её переменными. Весьма важной, но мало разработанной, представляется классификация моделей с точки зрения генезиса этой системы соотношений. Первый и наиболее распространённый тип составляют демографические модели, в которых система соотношений между переменными непосредственно и однозначно вытекает из смысла переменных модели, представляет собой результат анализа объекта моделирования по существу. Такая система соотношений между переменными носит априорный характер - его нарушение скорее свидетельствует о статистических или счётных ошибках, чем ставит под сомнение истинность модели. К этому типу относятся различные модели, лежащие в основе таблиц демографических, модели воспроизводства населения и др.
Ко второму типу относятся модели, в которых система соотношений между переменными отражает некоторую содержательную гипотезу о характере протекания демографических процессов и т. п. Система соотношений между переменными здесь также вытекает из анализа объекта моделирования по существу, но сходство или различие эндогенных переменных модели и соответствующих эмпирических характеристик объекта моделирования представляет собой тот критерий, на основе которого данная демографическая принимается либо отвергается. Лежащая в основе модели гипотеза может носить как чисто демографический, так и иной (социально-психологический и др.) характер. Формула Гомперца - Мейкема представляет собой наиболее удачный и широко известный пример моделей такого типа.
В основе моделей третьего типа лежит аналогия между моделируемым демографическим процессом и каким-либо иным процессом, количественные закономерности существования которого изучены. Отличие этих моделей от демографических моделей второго типа в том, что гипотеза - аналогия, как правило, не раскрывает механизма процесса. Вместе с тем рассуждения по аналогии содержат в себе значительную опасность. Известны, например, ошибочные попытки приписать населению закономерности роста, характерные для биологических популяций[3].
Система соотношений между переменными в моделях четвёртого типа носит чисто количественный характер. Она представляет собой либо аналитические выражения, либо числовые таблицы, полученные на основе эмпирического материала, и отражает количеств. закономерности, общие для групп населения, сведения о которых были использованы при построении модели. Подобные системы соотношений выявляются либо эвристически, либо с помощью некоторых математико-статистических методов (регрессии, корреляции, факторного анализа и др.). В основе применения таких демографических моделей лежит предположение, что выявленные связи между переменными модели характерны для всех населений, удовлетворяющих ограничениям данной демографической модели. Лишь в редких случаях удаётся содержательно интерпретировать полученные количественные связи так, чтобы эта интерпретация выглядела достаточно убедительной. Правомерность применения таких демографических моделей зависит от того, сколь тщательно и широко проведена проверка выявленных связей. Однако всегда остаётся опасность, что область, где допустимо применение данной демографической модели уже, чем это предполагалось. Примером демографической модели такого типа могут служить различные типовые демографические таблицы и аналогичные им построения, из которых наиболее известны вышеупомянутые типовые таблицы смертности. Среди неудачных попыток применения демографических моделей четвёртого типа можно отметить многочисленные попытки найти аналитическое выражение для возрастной функции рождаемости. Приведённые четыре типа демографические модели не исчерпывают всего их многообразия, существуют и другие модели, занимающие промежуточное положение.
Одним из основных видов современных демографических моделей являются дискретные, детерминистские макромодели одного или группы демографических процессов, лежащие в основе различных демографических таблиц, т. е. таблиц взаимозависимых значений. Демографические таблицы строятся как таблицы чисел демографических событий (рождений, браков, смертей, разводов и пр.) и чисел индивидов, находящихся в данном демографическом состоянии и относящихся к некоторой когорте. Исходная численность когорты (корень таблицы) принимается равной некоторой удобной для расчётов постоянной величине, выбираемой произвольно. Кроме того, в таблицы входят показатели интенсивности демографических событий, которые соответствуют интенсивностям, наблюдаемым в некотором реальном населении, а также различные средние и обобщающие характеристики. Состав входящих в таблицу функций и правила, описывающие связь между ними, вытекают из демографических моделей рассматриваемого процесса. Лежащие в основе демографических таблиц показатели интенсивности демографических событий (т. н. исходные показатели таблицы) относятся к числу экзогенных переменных демографический модели. Другой обязательной экзогенной переменной модели является возраст или иная временная переменная, измеряющая период, прошедший с момента образования данной когорты (длительность брака, время с момента рождения предыдущего ребёнка и т. п.). Исходные интенсивности демографических событий могут относиться как к реальной когорте, т. е. к совокупности людей, одновременно вступивших в некоторое демографическое состояние, так и к разным когортам, живущим одновременно в некотором населении. Во втором случае рассматривается некая условная когорта, в которой возрастные интенсивности демографических процессов такие же, как и в разных возрастных группах реального населения в течение некоторого календарного периода. Такая условная когорта называется в демографической литературе гипотетическим поколением.
Объединение таблиц смертности и таблиц рождаемости даёт простейшую дискретную модель воспроизводства населения. Её система соотношений между переменными совпадает с формулами, используемыми при расчёте будущей численности населения методом передвижки по возрастам. В аналитических целях более плодотворной была демографическая модель, представляющая собой непрерывный аналог этой модели и известная под названием интегральное уравнение воспроизводства населения. Модели воспроизводства населения широко используются для исследования влияния рождаемости и смертности на структуру населения и их совместного влияния на темп роста населения. Важным элементом подобного анализа является модель стабильного населения.
На протяжении всей истории демографии не прекращались попытки установить общие закономерности изменения демометрических функций с возрастом. Эти попытки породили целый ряд демографических модлей. К их числу относится формула Гомперца - Мейкема, описывающая рост вероятности смерти с возрастом. В её основе лежит гипотеза о накоплении в организме различного рода нарушений, что и объясняет увеличение смертности по мере увеличения возраста. В отличие от формулы Гомперца - Мейкема, типовые таблицы смертности, рассчитанные экспертами ООН, типовые таблицы смертности А. Коула и П. Демени и ряд др. были получены на основе статистического анализа эмпирического материала. Эвристическим путём была построена известная модель смертности У. Брасса. Подобные модели касаются и др. процессов: Коул и Демени построили типовые кривые рождаемости, Коул - модель вступления в первый брак и т. д.
Всё большее распространение приобретают имитационные модели, представляющие собой стохастические дискретные микромодели, в которых изменение демографического состояния индивида или другие демографические единицы моделируется на ЭВМ методом статистических испытаний (метод Монте-Карло). В основе таких демографических моделей лежит расчленение демографического поведения индивида или семьи на элементарные действия, акты или явления. Жизнь индивида рассматривается на каждом временном или возрастном шаге в виде некоторого набора альтернатив с определенными вероятностями выбора и функциями распределения. Так, имитационная модель брачной рождаемости выделяет, например, такие события, как вступление в брак (с этого начинается функционирование модели), зачатие, с учётом его желательности для семьи и используемой контрацепции, донашивание, рождение живого или мёртвого ребёнка, период послеродовой стерильности и т. д. Вероятности и их распределения могут рассматриваться как функции социальных, экономических и других переменных. После описания модели жизнь индивида или семьи прослеживается на ЭВМ от начала до конца, причём событие принимается наступившим или ненаступившим в зависимости от значений случайных чисел, вырабатываемых ЭВМ с помощью спец. датчика на каждом шагу имитации. Время в имитационных моделях меняется, как правило, с небольшим шагом - порядка одного месяца, а для получения содержательного результата надо проследить жизнь тысяч или десятков тысяч индивидов. Это связано с огромными затратами времени ЭВМ, что сдерживает развитие имитационного моделирования. Интерес к имитационным моделям связан прежде всего с тем, что они позволяют лучше учесть причинно-следственной связи, возникающие в демографическом процессе, включить в рассмотрение большое число поведенческих факторов, которые нельзя учесть в макромоделях. Например, модель, о которой речь шла выше, позволяет решать как прямую задачу о влиянии поведения демографического на уровень рождаемости, так и обратную - оценить эффективность контрацептивов. В конечном счёте, имитационные модели призваны решать ту же задачу, что и поиск значений демометрических функций - описать общую закономерность изменения интенсивности демографических событий с возрастом.