Смекни!
smekni.com

Разложимые показатели расслоения (стр. 3 из 3)

Последнее обстоятельство, на которое необходимо обратить внимание, заключается в том, что функция Лоренца разложима в смысле уже данного определения. Действительно, пусть F(w)=SlIFi(w). Тогда справедливо равенство L(w)=(1|W)SliWiLi(w), которое следует из определения функции Лоренца после вынесения из-под знака интеграла Sli и умножения каждого слагаемого на Wi/Wi. Легко убедиться, что сумма весов (lIWi/W) последнего соотношения равна 1. Однако коэффициент Джини неразложим. Наконец, энтропия распределения, представляющего собой функцию Лоренца, это разложимая мера расслоения Тейла.

ЗАДАЧИ

1. Получите с помощью таблицы из приложений к гл. 3 логарифмическую меру расслоения.

2. Получите с помощью таблицы из приложений к гл. 3 меру расслоения Тейла.

3. Получите с помощью таблицы из приложений к гл. 3 меру расслоения, основанную на квадрате коэффициента вариации.

Справки и ссылки

Глава базируется в основном на известных работах о разложимых показателях Fracois Bourguignon’а и Antony F.Shorrocks’а. В этих работах, по-видимому, впервые был поставлен вопрос о показателях со свойством разложимости. Само это свойство было подмечено ранее, как явствует из названия показателя Тейла, ссылка на которую имеется в уже упомянутых работах. Однако сами работы замечательны не только постановкой задачи, но и её решением. Более того, именно в них сформулированы предположения, изложенные в это главе. Вывод самих показателей имеется в упомянутой работе Шорокса.


Литература

1. Бартоломью Д. Стохастические модели социальных процессов. Изд. “Финансы и статистика”, Москва, 1985 г.

2. Бедность: альтернативные подходы к определению и измерению. Cornegie Endowment for International Peace. М. 1998 г.

3. Белкина Т.А., Лёвочкина М.С. Исследование модели оптимального управления негосударственным пенсионным фондом. В сборнике «Математические модели экономики». Изд. МГИЭМ, 2002

4. Борокин Ф.М., С.В. Соболева. Прогнозирование миграции и численности населения системой дифференциальных уравнений. Сборник Математические методы в социологии. Новосибирск, 1974 т.

5. Бреев Б.Д. Староверов О.В. Об одном методе учёта факторов в движении населения. «Экономика и математические методы», №1, 1979 г.

6. Гаврилец Ю.Н. Компромисс интересов и справедливость в оплате труда (модельный анализ). «Экономика и математические методы», том 28, выпуск 1. 1992 г.

7. Гаврилец Ю.Н. Модель равновесного функционирования экономики с переменной структурой населения. «Экономика и математические методы», том 30, вып. 2, 1994 г.

8. Гегель Г. Политические произведения, Изд. "Наука". М. 1978г