Такие исключения подчеркивают, что студенты-биологи могут получить профессиональную подготовку на уровне начала XXI века лишь в считанных вузах, да и то небезупречную. Почему? Поясню на примере. Для решения проблем генной инженерии, использования технологии трансгенов в животноводстве и растениеводстве, синтеза новых лекарственных препаратов нужны современные суперкомпьютеры. В США, Японии, странах Евросоюза они есть – это мощные ЭВМ производительностью не менее 1 терафлоп (1 триллион операций в секунду). В университете Сент-Луиса уже два года назад студенты имели доступ к суперкомпьютеру мощностью 3,8 терафлоп. Сегодня производительность самых мощных суперкомпьютеров достигла 12 терафлоп, а в 2004 году собираются выпустить суперкомпьютер мощностью 100 терафлоп. В России же таких машин нет, лучшие наши суперкомпьютерные центры работают на ЭВМ значительно меньшей мощности. Правда, нынешним летом российские специалисты объявили о создании отечественного суперкомпьютера производительностью 1 терафлоп.
Наше отставание в информационных технологиях имеет прямое отношение к подготовке будущих интеллектуальных кадров России, в том числе и биологов, поскольку компьютерный синтез, например, молекул, генов, расшифровка генома человека, животных и растений могут дать реальный эффект лишь на базе самых мощных вычислительных систем.
Наконец, еще один интересный факт. Томские исследователи выборочно опросили преподавателей биологических факультетов вузов и установили, что лишь 9% из них более или менее регулярно пользуются Интернетом. При хроническом дефиците научной информации, получаемой в традиционной форме, не иметь доступа к Интернету или не уметь пользоваться его ресурсами означает только одно – нарастающее отставание в биологических, биотехнологических, генно-инженерных и прочих исследованиях и отсутствие совершенно необходимых в науке международных связей.
Нынешние студенты даже на самых передовых биологических факультетах получают подготовку на уровне 70-80-х годов прошлого века, хотя в жизнь они вступают уже в XXI веке. Что касается научно-исследовательских институтов, то только примерно 35 биологических НИИ РАН имеют более или менее современное оборудование, и поэтому только там проводятся исследования на передовом уровне. Участвовать в них могут лишь немногие студенты нескольких университетов и Образовательного центра РАН (создан в рамках программы «Интеграция науки и образования» и имеет статус университета), получающие подготовку на базе академических НИИ.
Другой пример. Первое место среди высоких технологий занимает авиакосмическая отрасль. В ней задействовано все: компьютеры, современные системы управления, точное приборостроение, двигателе- и ракетостроение и т.д. Хотя Россия занимает в этой отрасли достаточно прочные позиции, отставание заметно и здесь. Касается оно в немалой степени и авиационных вузов страны. Участвовавшие в наших исследованиях специалисты Технологического университета МАИ назвали несколько самых болезненных проблем, связанных с подготовкой кадров для авиакосмической отрасли. По их мнению, уровень подготовки преподавателей прикладных кафедр (проектно-конструкторских, технологических, расчетных) в области современных информационных технологий все еще низок. Это во многом объясняется отсутствием притока молодых преподавательских кадров. Стареющий профессорско-преподавательский состав не в состоянии интенсивно осваивать постоянно совершенствующиеся программные продукты не только из-за пробелов в компьютерной подготовке, но и из-за нехватки современных технических средств и программно-информационных комплексов и, что далеко немаловажно, из-за отсутствия материальных стимулов.
Еще одна важная отрасль – химическая. Сегодня химия немыслима без научных исследований и высокотехнологичных производственных систем. В самом деле, химия – это новые строительные материалы, лекарства, удобрения, лаки и краски, синтез материалов с заданными свойствами, сверхтвердых материалов, пленок и абразивов для приборо- и машиностроения, переработка энергоносителей, создание буровых агрегатов и т.д.
Каково же положение в химической промышленности и особенно в сфере прикладных экспериментальных исследований? Для каких отраслей мы готовим специалистов-химиков? Где и как они будут «химичить»?
Ученые Ярославского технологического университета, изучавшие этот вопрос совместно со специалистами Центра ИСТИНА, приводят такие сведения: сегодня на долю всей российской химической промышленности приходится около 2% мирового производства химической продукции. Это лишь 10% объема химического производства США и не более 50-75% объема химического производства таких стран, как Франция, Великобритания или Италия. Что же касается прикладных и экспериментальных исследований, особенно в вузах, то картина такова: к 2000 году в России было выполнено всего 11 научно-исследовательских работ, а число экспериментальных разработок упало практически до нуля при полном отсутствии финансирования. Технологии, используемые в химической отрасли, устарели по сравнению с технологиями развитых промышленных стран, где они обновляются каждые 7-8 лет. У нас даже крупные заводы, например по производству удобрений, получившие большую долю инвестиций, работают без модернизации в среднем 18 лет, а в целом по отрасли оборудование и технологии обновляются через 13-26 лет. Для сравнения: средний возраст химических заводов США составляет шесть лет.
1.3 Место и роль фундаментальных исследований
Главный генератор фундаментальных исследований в нашей стране – Российская академия наук, но вее более или менее сносно оборудованных институтах работают всего около 90 тысяч сотрудников (вместе с обслуживающим персоналом), остальные (более 650 тысяч человек) трудятся в НИИ и вузах. Там тоже проводятся фундаментальные исследования. Поданным Минобразования РФ, в 1999 поду в 317 вузах их было выполнено около 5 тысяч. Средние бюджетные затраты на одно фундаментальное исследование – 34 214 рублей. Если учесть, что сюда входит приобретение оборудования и объектов исследования, затраты на электроэнергию, накладные расходы и т. д., то на зарплату остается всего от 30 до 40%. Нетрудно подсчитать, что если в фундаментальном исследовании участвуют хотя бы 2-3 научных сотрудника или преподавателя, то они могут рассчитывать на прибавку к заработной плате в лучшем случае 400-500 рублей вмесяц.
Что касается заинтересованности студентов в научных исследованиях, то она держится скорее на энтузиазме, а не на материальном интересе, а энтузиастов в наши дни совсем немного. При этом тематика вузовских исследований очень традиционна и далека от нынешних проблем. В 1999 году в вузах провели 561 исследование по физике, а по биотехнологии – всего 8. Так было тридцать лет назад, но никак не должно быть сегодня. Кроме того, фундаментальные исследования стоят миллионы, а то и десятки миллионов долларов – с помощью проволочек, консервных банок и прочих самодельных приспособлений их уже давным-давно не проводят.
Разумеется, есть дополнительные источники финансирования. В 1999 году 56% научных исследований в вузах финансировались за счет хозрасчетных работ, но они не были фундаментальными и не могли радикально решить проблему формирования нового кадрового потенциала. Руководители наиболее престижных вузов, получающих заказы на научно-исследовательские работы от коммерческих клиентов или зарубежных фирм, понимая, насколько нужна в науке «свежая кровь», начали в последние годы доплачивать тем аспирантам и докторантам, кого они хотели бы оставить в вузе на исследовательской или преподавательской работе, закупать новое оборудование. Но такие возможности есть лишь у очень немногих университетов.
Ставка на критические технологии.
Понятие «критические технологии» впервые появилось в Америке. Так назвали перечень технологических направлений и разработок, которые в первую очередь поддерживало правительство США в интересах экономического и военного первенства. Их отбирали на основе чрезвычайно тщательной, сложной и многоступенчатой процедуры, включавшей экспертизу каждого пункта перечня финансистами и профессиональными учеными, политиками, бизнесменами, аналитиками, представителями Пентагона и ЦРУ, конгрессменами и сенаторами. Критические технологии тщательно изучали специалисты в сфере науковедения, науко- и технометрии.
Несколько лет назад Правительство России тоже утвердило подготовленный Министерством науки и технической политики (в 2000 году оно переименовано в Министерство промышленности, науки и технологий) список критических технологий из более 70 основных рубрик, каждая из которых включала несколько конкретных технологий. Их общее число превышало 250. Это гораздо больше, чем, например, в Англии – стране с очень высоким научным потенциалом. Ни по средствам, ни по кадрам, ни по оборудованию Россия не могла создать и реализовать такое количество технологий. Три года назад то же министерство подготовило новый перечень критических технологий, включающий 52 рубрики (до сих пор, кстати, не утвержденный правительством), но и он нам не по карману.