Данные о прогнозных значениях показателей других демографических показателей, представим в таблице (расчет полученных параметров в Приложении 2).
Таблица 5
Прогнозные значения абсолютных показателей родившихся и умерших, прибывших и выбывших в Оренбургской области, полученные методом экспоненциального сглаживания.
Абсолютный показатель, человек | 2006 | 2007 | 2008 | Прогноз на 2009 | Δ | ε | ||||
I способ определения экспоненциально взвешенного среднего начального | ||||||||||
Родившиеся | 23 335 | 25 776 | 26 947 | 23 915 | -135 | 3 275 | 9,94 | |||
Умершие | 31 583 | 31 000 | 30 904 | 30 754 | 64 | 2 571 | 8,14 | |||
II способ определения экспоненциально взвешенного среднего начального | ||||||||||
Родившиеся | 23 335 | 25 776 | 26 947 | 25 150 | -4296 | 5 386 | 20,14 | |||
Умершие | 31 583 | 31 000 | 30 904 | 29 557 | 1 241 | 2 965 | 14,91 | |||
I способ определения экспоненциально взвешенного среднего начального | ||||||||||
Прибывшие | 31 949 | 25 570 | 28 053 | 37 366 | -3539 | 15857 | 35,27 | |||
Выбывшие | 33 225 | 29 085 | 25 603 | 36311 | -2070 | 8458 | 20,04 | |||
II способ определения экспоненциально взвешенного среднего начального | ||||||||||
Прибывшие | 31 949 | 25 570 | 28 053 | 41 292 | -16856 | 19228 | 49,84 | |||
Выбывшие | 33 225 | 29 085 | 25 603 | 38 162 | -8348 | 9757 | 24,83 |
Так же как и с показателем численности населения, величина средней относительной ошибки при расчете 2-м способом выше, что свидетельствует о нецелесообразности применения первого значения базы прогноза в качестве экспоненциально взвешенной Uо. В целом точность прогноза для показателей естественного движения населения находится в границах высокой точности, для показателей миграционного движения точность прогноза удовлетворительная.
2.3 Нахождение прогнозных значений методом наименьших квадратов
демографический прогноз население численность
Сущность метода наименьших квадратов состоит в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами. Расчетные величины находятся по подобранному уравнению – уравнению регрессии.
Чем меньше расстояние между фактическими значениями и расчетными, тем более точен прогноз, построенный на основе уравнения регрессии. Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. Иногда принимаются во внимание соображения о характере роста уровней ряда. Для нахождения прогнозных значений численности населения часто предполагается, что рост идет в геометрической прогрессии, и тогда сглаживание производится по показательной функции.
(4)где
- численность населения в прогнозный период; - численность населения в период, предшествующий прогнозному; е - основные натурального логарифма; k - общий коэффициент прироста населения, выраженный в долях единиц, рассчитанный по формуле: (5)где M - число родившихся за период; N – число умерших за период; П- число прибывших за период; В – число выбывших за период; S – средняя численность населения за период; t- период, на который разрабатывается прогноз.
Согласно имеющимся данным, численность населения Оренбургской области на 1 января 2008 года составила 2 119 003 чел., на 1 января 2009 – 2 111 531 чел., за 2008 год родилось 26 947 чел., умерло 30 904 чел., 25 570 чел. прибыло и 29 085 чел. выбыло. Рассчитаем численность населения в 2010-2012 гг. при условии, что коэффициент общего прироста населения (
) останется неизменным на всем протяжении прогнозных лет:Сглаживание временных рядов методом наименьших квадратов служит для отражения закономерности развития изучаемого явления. В аналитическом выражении тренда время рассматривается как независимая переменная, а уровни ряда выступают как функция этой независимой переменной. Ясно, что развитие явления зависит не от того, сколько лет прошло с отправного момента, а от того, какие факторы влияли на его развитие, в каком направлении и с какой интенсивностью. Развитие явления во времени выступает как результат действия этих факторов.
Правильно установить тип кривой, тип аналитической зависимости от времени – одна из самых трудных задач предпрогнозного анализа.
Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки, вычисляемой по формуле:
(6)где
– фактические значения ряда динамики; – расчетные (сглаженные) значения ряда динамики; n– число уровней временного ряда; р – число параметров, определяемых в формулах, описывающих тренд.С помощью программы Excel проверим предположение о том, что изменение численности населения в Оренбургской области, хорошо апроксимируется экспоненциальной линией тренда.
Рис. 1. Динамика численности населения в Оренбургской области с экспоненциальной линией тренда.
Видно, что разница между фактическими и сглаженными значениями данного ряда очень велика. Невысокий коэффициент достоверности аппроксимации также подтверждает, что использовать данный тип тренда нецелесообразно.
Наибольшее приближение к фактическим уровням данного динамического ряда дает функция полинома второй степени.
Рис. 2. Динамика численности населения в Оренбургской области с полиномиальной линией тренда.
При использовании уравнения полинома третьей степени, коэффициент аппроксимации увеличивается до 0,97, но при этом усложняется и сама модель, что может отрицательно сказаться на ее прогностических возможностях.
Уравнение регрессии примет вид:
(7) - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номером i; а - это средний (выровненный) уровень тренда на момент или период, принятый за начало отсчета времени, т.е. t = 0; b - это средний за весь период среднегодовой прирост, который изменяется равномерно со средним ускорением, равным 2с; c- константа, главный параметр параболы II порядка.Параметры a, b и c оцениваются методом наименьших квадратов и отвечают принципу максимального правдоподобия: сумма квадратов отклонений фактических уровней от тренда (от выровненных по уравнению тренда уровней) должна быть минимальной для данного типа уравнения.
На диаграмме уравнение тренда имеет вид:
,где =0 в 1990г.При этом нумерация периодов начинается с t=1. Однако рациональнее начало отсчета времени перенести в середину ряда, т.е. при нечетном п - на период (момент) с номером (п +1 )/2, а при четном числе уровней ряда - на середину между периодом с номером n/2 и (n/2)+1. Расчет параметров тренда при переносе отсчета времени на середину ряда приведен в приложении 3. Тогда уравнение тренда принимает вид:
, где =0,5 в 2000г.За период 1990-2009г показатель численности населения в Оренбургской области убывал в номинальной оценке ускоренно, со средним ускорением
человек за год; средняя убыль населения за весь период составила 3 087 человек; средний уровень численности населения на середину периода был равен 22 084 35 чел.