Смекни!
smekni.com

Построение выборки в социологическом исследовании (стр. 1 из 7)

Содержание

1 Выборочный метод: определение и истоки

2 Типы вероятностных выборок и их реализация

3 Размер вероятностной выборки

4 Целевой отбор

Библиографический список

1 Выборочный метод: определение и истоки

Задача построения выборки возникает всякий раз, когда необходимо собрать информацию о некоторой группе или большой совокупности людей. Выборку в той или иной форме используют в ориентированных на «жесткие» статистические методы опросах, в исследованиях политических и культурных элит и даже при отборе «случаев» для включенного наблюдения и качественного анализа.

Статистические (или квазистатистические) обследования населения и ресурсов, судя по всему, зародились одновременно с первыми формами централизованной социальной и политической организации: развитые аграрные общества и древние города-государства нуждались в такой информации и использовали ее при решении разнообразнейших управленческих задач — от фискальной политики до строительства общественных бань. Эти обследования иногда принимали форму сплошных переписей населения. (Об одной такой переписи, имевшей, правда, самые печальные последствия, рассказывает нам книга пророка Самуила: когда царь Давид (X в. до н. э.) осуществил перепись населения древнего Израиля, в стране разразилась страшная эпидемия (2 Цар. 24). Однако значительно чаще приходилось довольствоваться сведениями о какой-то части совокупности: об урожайности судили по пробному обмолоту, о партии товара — по образцу, а о прихожанах — по их духовному наставнику.

Выборка — это подмножество заданной совокупности (популяции), позволяющее делать более или менее точные выводы относительно совокупности в целом. Зачем нужно строить выборки? Прежде всего, из практических соображений, так как выборка экономит силы и средства исследователей. Проведение полномасштабной переписи или сплошного опроса населения требует значительных финансовых и трудовых затрат, которые к тому же могут пропасть впустую в случае, если в разработке методики исследования были допущены принципиальные просчеты.

Другая причина заинтересованности в выборках связана с тем, что выборочная процедура представляет собой удобную и экономичную форму индуктивного вывода. Третья причина заключается в том, что эта процедура реализует фундаментальный принцип рандомизации, т. е. случайного отбора (от англ. random — случайный, выбранный наугад).

Представление о том, что отбор наблюдений должен носить случайный, непредумышленный характер, в общем соответствует нашему интуитивному знанию об условиях вынесения объективного и непредвзятого суждения. Однако строгая, т. е. математико-статистическая, теория случайной выборки вплоть до конца XIX — начала XX вв. не пользовалась популярностью в среде профессиональных статистиков. Многим исследователям казалось, что в основе отбора должна лежать не «игра случая», а поиск типичных, характерных наблюдений. Это убеждение препятствовало применению в массовых обследованиях методов теории вероятности, достигшей высочайшего уровня развития уже в XVIII— первой половине XIX вв. Применимость выборочного метода для изучения случайно распределенных признаков, например дохода или размера семьи, была впервые обоснована в работах норвежца А. Киэра, англичан А. Боули и К. Пирсона, а также русского статистика А. И. Чупрова.

Следующим принципиально важным шагом в развитии выборочного метода стала осуществленная Р. Фишером разработка техники рандомизации в эксперименте и выборочном наблюдении.. Что же касается выборочного обследования, то оно часто используется как «замена» экспериментального метода. Нельзя провести эксперимент, в котором людям в случайном порядке присваиваются определенные значения переменных «пол» или «цвет кожи». Однако применение выборочного метода и статистического анализа, как мы увидим в дальнейшем, позволяет справляться с этими ограничениями и делать выводы о взаимосвязях между самыми разными переменными, включая вышеупомянутые. Но для того, чтобы такие выводы были обоснованы, нужно устранить любое систематическое влияние «посторонних», смешивающих факторов на изучаемые переменные. Единственным средством для достижения этой цели является абсолютно случайный характер отбора наблюдений. Лишь равенство шансов попадания в выборку для каждого наблюдения, т. е. отбор «наугад», гарантирует от намеренных или ненамеренных искажений. Пусть, например, в ходе опроса мы изучаем влияние пола и рода занятий респондента на его отношение к планированию семьи и ограничению рождаемости. Если используемая нами выборочная процедура ведет к тому, что работающие женщины имеют несколько меньшие шансы стать респондентами, чем домохозяйки и пенсионерки (последних, как известно, проще застать дома), наши результаты наверняка окажутся смещенными.

Поэтому наилучшей моделью отбора считается вероятностная, или случайная, выборка, в которой строго соблюдается принцип равенства шансов попадания в выборку и для всех единиц изучаемой совокупности, и для любых последовательностей таких единиц.

Именно с рассмотрения разных подходов к построению вероятностной выборки мы и начнем наше обсуждение, чтобы в дальнейшем перейти к не столь совершенным видам целевого, т. е. не основанного на вероятностях отбора, и их роли в практике социологических исследований.

Выше мы определили, что такое выборка. Сейчас нам необходимо строго определить еще несколько элементарных понятий. Переписью называют процедуру сбора информации о каждом члене изучаемой группы или популяции. Все члены интересующей исследователя группы (популяции) составляют генеральную совокупность. Выборочная процедура обеспечивает обоснованность и «законность» выводов о генеральной совокупности, сделанных на основании небольшой выборки.

2 Типы вероятностных выборок и их реализация

Первым шагом в построении любой модели отбора, включая вероятностную, является определение генеральной совокупности. Решение этой задачи далеко не всегда бывает очевидным. Прежде всего, генеральная совокупность, т. е. множество интересующих социолога объектов исследования, может быть задана и описана лишь на основе каких-то содержательных представлений. Если, например, нас интересуют политические пристрастия избирателей, естественно включить в генеральную совокупность лишь тех, кто уже достиг 18-летнего возраста. Изучение факторов, влияющих на формирование семейного бюджета горожан, потребует иного определения генеральной совокупности: интересующая исследователя популяция в данном случае будет состоять из городских семей.

Полезно также помнить о том, что идеальная генеральная совокупность, задаваемая теоретическим описанием предмета исследования, почти никогда не будет полностью совпадать с реальной совокупностью. Реальная генеральная совокупность подвержена постоянным колебаниям: «взрослое население города Воронежа на 00 час 15 ноября 1996 года» будет отличаться от «взрослого населения города Воронежа на 00 час 16 ноября 1996 года». Некоторые люди за день уедут из города, попадут в больницу, некоторые — вернутся домой из командировки и т. п. Поэтому столь важно при описании изучавшейся в исследовании генеральной совокупности указывать время и место проведения исследования. Следует также помнить, что идеальная генеральная совокупность — это теоретическая абстракция, более или менее совпадающая с реальной совокупностью. Выборка осуществляется из реальной популяции, переход от которой к идеальной совокупности обеспечивается не только правилами статистического вывода, но и некоторой долей теоретического воображения.

Если исследователь построил выборку, которая представляет интересующую его совокупность с приемлемой степенью точности, то полученная выборка является репрезентативной (представительной). В противоположном случае можно говорить о наличии существенной выборочной ошибки. Более строго выборочную ошибку определяют как расхождение между оценкой некоторого показателя, получаемой на основании исследования выборки, и истинным значением этого показателя в генеральной совокупности.

К счастью, существуют точные методы для учета и оценки случайной выборочной ошибки, связанной с не носящими систематического характера колебаниями изучаемой переменной в разных подвыборках из одной и той же генеральной совокупности. Подробнее эти методы мы будем обсуждать ниже. Значительно более серьезную проблему создает наличие систематических смещений, возникающих в результате нарушения случайного характера выборочной процедуры. Результаты такого «не вполне случайного» отбоpa могут выглядеть более или менее правдоподобно, однако сами по себе он: никогда не позволят обнаружить смещение или оценить его величину.

Последнее утверждение можно проиллюстрировать на примере классического опыта с рулеткой. Если нам скажут, что вчера десять раз подряд выпало «красное», мы сможем назвать такую серию событий крайне маловероятной. Однако этот субъективно подозрительный результат сам по себе не дает оснований для каких-то суждений о величине и характере ошибок, порождаемых выборочной процедурой, т. е. об исправности механизма самой рулетки.

Систематическая ошибка выборки не обязательно является результатом злого умысла. Например, в США во время войны во Вьетнаме (до введения контрактной системы набора на армейскую службу) правительство проводило специальные лотереи для отбора призывников. Фактически случайно отбирались даты рождения: все годные к несению строевой службы юноши, родившиеся в день, который определялся в ходе такого «розыгрыша», призывались в армию. В 1970 г. результаты отбора были подвергнуты острой критике. Проведенное специальной комиссией расследование показало, что в выборочной процедуре действительно присутствовало смещение. Билетики с напечатанными датами были заключены в специальные капсулы, которые затем опускали в лотерейный барабан в порядке следования месяцев, начиная с января. Из-за недостаточного перемешивания капсул внутри барабана капсулы с ноябрьскими и декабрьскими датами концентрировались в верхней части и, естественно, выпадали с заметно большей частотой.