2. Согласны ли Вы жить по соседству с хорватами?
3. Согласны ли Вы работать в одном отделе (учреждении) с хорватом?
4. Позволите ли Вы своей дочери выйти замуж за хорвата?
Предполагается, что согласие с каждым последующим утверждением отражает переход к очередной градации ординальной шкалы установок — от меньшей близости к большей. Существенным требованием к избранной совокупности вопросов является их содержательная валидность, иными словами, здесь необходимы экспертные процедуры, описанные выше. Важно также убедиться в обоснованности предположения об одномерности шкалируемой переменной. Если в данных, полученных при использовании шкал социальной дистанции, встречаются «нелогичные» (так называемые нешкалируемые) индивидуальные паттерны ответов, причиной чаще всего бывает влияние другой переменной. Примером нешкалируемого паттерна ответов может служить ситуация, когда респондент, отрицательно ответивший на «слабые» вопросы, неожиданно соглашается с более «сильными», предполагающими высокую степень близости (среди специалистов по социологическим методам имеет хождение соответствующая шутка: если человек, не желающий жить в одном городе с черными, согласен выдать свою дочь замуж за черного, это не ошибка измерения: просто он одинаково ненавидит негров и собственную дочь).
Шкала равнокажущихся интервалов Л. Терстоуна позволяет достичь более высокого уровня измерения установок, чем ординальный. Она представляет собой целый класс методов интервального шкалирования и будет рассмотрена здесь в качестве наиболее простого примера.
Первая шкала равнокажущихся интервалов была описана в работе 1929 года и предназначалась для измерения остановок по отношению к церкви как социальному институту. Этой работой мы воспользуемся для того, чтобы проиллюстрировать основные этапы предложенной Терстоуном процедуры.
Шкала Терстоуна позволяет расположить и суждения, и индивидов вдоль одномерного континуума установки, полюсам которого соответствует крайне благожелательное и крайне негативное отношение к объекту установки (церкви, партии, прогрессивному налогообложению или чему-либо еще). Шкальный балл суждения или индивида отражает степень этой благожелательности или неблагожелательности.
На первом этапе исследователь составляет максимально широкий список суждений (высказываний), выражающих интересующую его установку. Так, Терстоун собирал мнения коллег, студентов, высказывания из публикаций, касающихся церкви. Здесь уместны также интервьюирование, использование открытых вопросов («Что Вы думаете о...?»), групповая дискуссия и т. п. Собранные суждения были подвергнуты первичному отбору. Исследователи отсеяли те высказывания, которые не удовлетворяли обычным требованиям к конструированию вопросов — двусмысленные, слишком длинные, содержащие специальные термины и т.п.. При первичном отборе суждений для шкалы Терстоуна используют и некоторые специальные критерии:
1. Исключаются суждения, относящиеся скорее к прошлому, чем к настоящему (например, «В средневековье церковь играла важную роль в общественной жизни»).
2. Исключаются суждения, описывающие факты, а не мнения и отношения. Конечно, далеко не всегда можно отделить высказывания, описывающие фактическое положение дел, от прочих. Скажем, слова «Бог любит нас всех» — факт для верующего, хотя другие люди могут усмотреть в них определенное отношение к религии. В практических целях вполне достаточно руководствоваться следующим критерием для выявления фактических суждений, подлежащих устранению из шкалы Терстоуна: фактом является любое высказывание, для установления истинности которого могут быть использованы какие-то «посюсторонние» процедуры верификации.
3. Исключаются также суждения, содержащие слова «все», «всегда», «никто», «никогда», так как этим словам люди обычно придают различный смысл, что затрудняет интерпретацию.
В результате исходный список из 350—400 суждений сокращается до 100—120. Следующим этапом является «судейская» процедура, позволяющая определить шкальное значение для каждого суждения и провести среди них окончательный отбор. Терстоун предложил разделить гипотетический континуум благожелательного-неблагожелательного отношения к церкви на 11 категорий (от «А» до «К»), разделенных субъективно равными интервалами. Требование субъективного равенства интервалов между градациями весьма существенно для построения шкалы Терстоуна и обычно его специально подчеркивают в инструкции для «судей» (например, «Представьте, что карточки с буквами от „А" до “К" представляют расположенные на равном расстоянии градации шкалы, так что градации „А" соответствует максимально благожелательное отношение к Х (объекту установки), а „К" — максимально неблагожелательное, негативное отношение»). Каждое из утверждений списка печатается на отдельной карточке, которые и раздаются «судьям» (в конструировании шкалы установок по отношению к церкви участвовало 300 таких экспертов). Задача «судей» заключается в том, чтобы разложить все 100—120 суждений по 11 рубрикам соответственно степени выраженного в них благожелательного или неблагожелательного отношения к объекту остановки.
Подчеркнем, что «судей» не просят высказать их собственное мнение, они должны лишь рассортировать высказывания.
Шкальное значение (балл) каждого из высказываний определяется распределением оценок «судей», поэтому началом следующего этапа (собственно построения шкалы) является подсчет процента экспертов, положивших высказывание в определенную стопку. Далее подсчитывается суммарный (кумулятивный) процент «судей», отнесших суждение к данной градации и предшествующим градациям. Терстоун присваивал использовавшимся градациям числовые значения от 1 (градация «А», максимально благожелательное отношение к церкви) до 11 (градация «К»). Проиллюстрируем дальнейшее на примере гипотетического суждения N, данные для которого представлены в таблице 1.
Таблица.1
Распределение «судейских» оценок для суждения N
Градация (числовое значение) | «А» (1) | «В» (2) | «С» (3) | «D» (4) | «Е» (5) | «F» (6) | «G» (7) | «Н» (8) | «I» (9) | «J» (10) | «K» (11) |
Процент судей, отнесших суждение к данной градации | 1 | 2 | 2 | 1 | 3 | 33 | 34 | 12 | 7 | 3 | 2 |
Кумулятивный процент | 1 | 3 | 5 | 6 | 9 | 42 | 76 | 88 | 95 | 98 | 100 |
Распределение кумулятивных (накопленных) процентов позволяет вычислить значения медианы и междуквартильного размаха. Медиана, или процентиль 50 в распределении накопленных частот, — это такое значение на шкале «А» — «К», относительно которого половина судей дала большие, а другая половина — меньшие оценки данного утверждения. Медиана, таким образом, делит пополам упорядоченное множество значений признака. Вычислить медиану мы можем по следующей формуле:
В методе Терстоуна ширина интервала между соседними численными градациями по определению равна 1 (равнокажущиеся интервалы). В используемом нами примере границами интервала, где расположена медиана (процентиль 50), являются градации «F» и «G» (см. табл. 1). Фактической нижней границей интервала медианы будет значение 6,5, отсюда:
Значение медианы и принимается за шкальный балл («цену») суждения. Для гипотетического суждения N в нашем примере он оказался равен 6,7. (В принципе более простым является графический метод нахождения медианы. Для этогона миллиметровой бумаге строится кривая накопленных процентов — огива, позволяющая легко найти числовое значение, соответствующее процентилю 50.)
Ясно, однако, что не все суждения, получившие оценку «судей», в равной мере пригодны для шкалы: некоторые из суждений получат весьма согласованные и единодушные оценки экспертов, тогда как другие вызовут разнобой во мнениях. Для оценки внутренней согласованности отдельных высказываний шкалы Терстоун применил меру разброса судейских оценок — междуквартильный размах. (Здесь снова вместо распределения абсолютных частот экспертных оценок используется распределение процентилей, т. е. накопленные частоты выражают в кумулятивных процентах, что позволяет сравнивать выборки разного объема.) Междуквартильный размах — это расстояние между первым и третьим квартилем распределения. Первый квартиль (Q1) задается точкой на оси, до которой лежит 25% полученных оценок суждения, а третий ((Q3) — точкой, выше которой лежит 25% оценок. (Легко видеть, что второму квартилю соответствует медиана.) Для вычисления междуквартильного размаха (Q3 ¾ Q1) сначала устанавливаются значения, соответствующие первому и третьему квартилям распределения. Для этого используются формулы, аналогичные формуле для медианы, с соответствующими поправками: берется фактическая нижняя граница интервала соответствующего квартиля, кумулятивный процент для нижней границы интервала данного квартиля и т. д. Так, для первого квартиля формула подсчета такова:
Для нашего примера с суждением N:
Читатель может самостоятельно выписать аналогичную формулу для третьего квартиля (75 процентиль), произвести необходимые подсчеты и убедиться, что для вымышленного суждения N междуквартильный размах (Q3 ¾ Q1) составит 1,7. Те суждения, для которых разброс оценок, измеренный через междуквартильный размах, оказывается слишком велик, исключаются из шкалы Терстоуна. Предполагается, что высказывание, получившее столь разные оценки, воспринимается слишком неоднозначно. Так, Терстоун исключил из первоначально предъявленного «судьям» списка 90 высказываний из 130. В результирующей шкале оставляют одно-два высказывания для каждого деления шкалы, чтобы все градации предполагаемого установочного континуума оказались в равной мере представлены.