Если получившуюся шкалу предъявить теперь группе респондентов, то индивидуальным баллом каждого субъекта, выражающим меру «благожелательность» его установки, можно считать медиану (или средний балл) всех суждений, с которыми он согласился.
Многие критики шкалы Терстоуна указывали на возможность влияния на получаемые результаты характеристик «судейской» группы и широты диапазона предлагаемых суждений. Все же существуют веские основания считать, что такая шкала обладает вполне удовлетворительной воспроизводимостью и в среднем диапазоне дает уровень измерения, превосходящий ординальный (является так называемой шкалой разностей). Удаление или прибавление пункта шкалы не меняет шкальных значений других пунктов-высказываний. Приведем некоторые примеры высказываний, включенных Терстоуном в окончательный вариант шкалы установок по отношению к церкви (в скобках указан шкальный балл суждения):
· «Я думаю, что церковь – это наиважнейший социальный институт в современной Америке» (0,2);
· «Когда я нахожусь в храме, мне доставляет удовольствие наблюдать за службой, особенно если при этом звучит хорошая музыка» (4,0);
· «Я ощущаю потребность в какой-то религии, но не нахожу того, что мне нужно, ни в одной из существующих церквей» (6,1);
· «С моей точки зрения, церковь безнадежно устарела» (9,1).
В основе шкалы Гутмана также лежит идея кумулятивности: одни высказвания-пункты имеют большую «нагрузку» на одномерном континууме шкалируемой переменно-признака, другие – меньшую. Модель шкалирования, предложенная Гутманом, подразумевает, что в идеальном случае респондент, согласившийся с более «нагруженным» пунктом, согласится и со всеми менее «нагруженными». Таким образом, знание максимального шкального балла респондента позволяет полностью воссоздать паттерн его ответов. Шкалируемая переменная-признак не обязательно является установкой, она может характеризовать поведение: одна из первых гутмановских шкал, например, содержала пункты, описывающиен симптомы реактивного невроза, расстройства сна, тошнота, страх и т.п. В предложенной Гутманом процедуре обычно используется совокупность дихотомических вопросов, т.е. вопросов, на которые могут быть даны лишь два ответа: “да” или “нет”, “согласен” или “не согласен”. Совокупность вопросов или утверждений, составляющих гутмановскую шкалу, должна обладать одним существенным свойством: вероятность положительного ответа монотонно возрастает с ростом значения шкалируемой (латентной) переменной. Отсюда следует, что субъекты, имеющие больший шкальный балл, т.е. большее значение латентной переменной, с большей вероятностью дают положительный ответ на каждый отдельный вопрос. Это условие легко проиллюстрировать на примере следующих вопросов о росте (для простоты изложения предположим, что ошибка измерения отсутствует, т.е. все респонденты знают и точно сообщают свой истинный рост):
1.Верно ли, что Ваш рост превышает 1,50 м?
2.Верно ли, что Ваш рост превышает 1,60 м?
3.Верно ли, что Ваш рост превышает 1,70 м?
Эти вопросы образуют идеальную гутмановскую шкалу: если ошибка измерения отсутствует, любой респондент, ответивший положительно на вопрос 3, дает положительный ответ и на вопросы 2 и 1. Вообще, зная максимальный балл респондента, мы можем полностью воссоздать его паттерн ответов. Для вопросов о росте все возможные паттерны ответов (шкальные типы) приведены в табл. 2.
Таблица 2
Ответы на вопросы о росте для четырех гипотетических респондентов
Вопрос, № п/пРеспондент | 1 | 2 | 3 |
А | + | + | + |
Б | + | + | ¾ |
В | + | ¾ | ¾ |
Г | ¾ | ¾ | ¾ |
Если респондентов и вопросы расположить на одной шкале латентной переменной (в данном случае, «роста»), то станет очевидным, что респонденты реагируют на вопросы в зависимости от своего ранга (положения) на этой же шкале: респондент данного роста, позитивно прореагировавший на некий вопрос-пункт, будет также позитивно реагировать на все пункты, имеющие более низкий ранг (в нашем примере, на все более «низкорослые» вопросы-пункты). Скажем, для примера с ростом совместное упорядочение вопросов и респондентов на гутмановской шкале могло бы выглядеть, как на рисунке 2.
Вопрос 2 |
Вопрос 3 |
Вопросы Ответы | Вопрос 1 («стук в дверь») | Вопрос 2 («публичная дискуссия») | Вопрос 3 («опасение вызвать раздражение») | Число случаев, N |
Паттерн ответа («+» — «верно», «—» — «неверно»): | + | + | + | 30 |
+ | + | — | 50 | |
+ | — | — | 45 | |
— | — | — | 10 | |
Всего 135 |
Судя по таблице 6.3, априорное упорядочение вопросов совпало с реальным: самый «легкий» первый вопрос оказался и самым популярным, тогда как на самый «тяжелый» вопрос шкалы положительно ответили лишь 30 опрошенных: нежелание высказывать свою точку зрения требует значительно большего количества «благопристойности», чем привычка стучать в дверь.
Если бы использованный нами исходный порядок вопросов не совпал бы с их реальным ранжированием по числу позитивных ответов, то это само по себе не доказывало бы «нешкалируемости» данной совокупности пунктов: для того, чтобы получить столь же красивую «гутмановскую» картину распределения ответов, как в предыдущей таблице 6.2, было бы достаточно просто переставить столбцы таблицы так, чтобы первым оказался самый популярный вопрос с наибольшим числом положительных ответов и т. д. (Упорядоченную таким образом таблицу обычно называют шкалограммной матрицей, или шкалограммой.)
Реальной проблемой в нашем примере, как и в большинстве случаев построения гутмановской шкалы, стало наличие так называемых нешкальных типов, т. е. таких паттернов ответа, которые попросту не укладываются в логику одномерной модели с монотонно возрастающей вероятностью ответа. Примером «нешкального» паттерна мог бы быть положительный ответ на третий вопрос при отрицательных ответах на первые два вопроса (— — +). То обстоятельство, что некий респондент, бесцеремонно входящий в чужую дверь без стука, боится открыто выразить свое мнение, может быть и случайной ошибкой, и результатом влияния какой-то посторонней переменной: возможно, отвечая на третий вопрос, этот человек думал не о хороших манерах, а о том, что высказывать свое мнение открыто в его привычной среде «невыгодно», недальновидно и т. п. Для того чтобы проверить шкальную гипотезу о том, что данная совокупность вопросов дает хорошее приближение к гутмановской шкале, нам следует трактовать «нешкальные» типы ответа как ошибки и оценить, насколько велико отклонение от идеальной модели. Пусть наш исследователь получил следующее распределение «нешкальных» типов (см. табл. 4).