Смекни!
smekni.com

Метод средних величин в изучении общественных явлений (стр. 2 из 4)

Например:

Вклады населения в 2000 году характеризуются следующими данными (млрд. руб.):

Таблица 1. Информация о вкладах населения в 2000 году

1 полугодие
Январь Февраль Март Апрель Май Июнь
76007,3 84347,0 89694,6 93653, 96062, 97933,7
2 полугодие
1.07 1.08 1.09 1.10 1.11 1.12 1.01
99203,5 104396,8 108565,2 111522,5 114864,8 116404,5 118244,8

Рассчитать среднемесячную сумму вкладов населения в первом и втором полугодии.

Для расчета среднемесячной суммы вкладов населения в первом полугодии используем формулу средней арифметической простой.

Для расчета среднемесячной суммы вкладов населения во втором полугодии применим формулу средней хронологической

Вывод. Среднемесячные суммы вкладов в первом и втором полугодиях рассчитываются по разным формулам.

В первом полугодии по средней арифметической простой, так как данный ряд динамики интервальный.

Во втором полугодии среднемесячная сумма вкладов рассчитывается по средней хронологической, так как этот ряд динамики моментный.

Средняя арифметическая взвешенная рассчитывается в тех случаях, когда связь между признаками прямая, т.е. при умножении одного признака (х) на другой (f). Получают третий признак, имеющий реальный экономический смысл. Например, если при определении средней заработной платы известны заработная плата одного рабочего и численность рабочих, определяемый фонд заработной платы (х*f).

Если связь между признаками обратная, то нужно делить один показатель (объемный – w) на другой (х), используют формулу средней гармонической

, где х – варианты, w – объем признака

Например, если дан фонд заработной платы (w) и заработная плата рабочего (х), то путем деления первого показателя на второй находят численность рабочих

.

Например, заработная плата работников предприятия за год составила:

Таблица 2. Информация о заработной плате работников за год

Номер чеха Средняя заработная плата работника, тыс. руб. (х) Число работников (f) Фонд заработной платы (x*f)
1 2 3 62 70 58 180 200 120 11160 14000 6960
Всего 190 500 32120

Определить среднегодовую заработную плату работника предприятия.

тыс. руб.

Для определения среднегодовой заработной платы использована формула средней арифметической взвешенной.

Например:

Рассчитать среднюю заработную плату одного рабочего по трем цехам предприятия.

Таблица 3. Информация о заработной плате работников по цехам

Номер чеха Средняя заработная плата рабочего, (х) Число работников, чел.
Фонд заработной платы, руб. (w)
1 2 3 50 62 70 80 120 100 4000 7440 7000
Всего 300 18440

В данной задаче имеется такой показатель, как фонд заработной платы, который является объемным, следовательно, задача решается по средней гармонической взвешенной.

тыс. руб.

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной, которая имеет формулу

.

Средняя квадратическая простая применяется средней величины стороны n квадратных участков.

Например:

Имеются три участка земельной площади со сторонами квадрата

х1 = 200 м

х2 = 100 м

х3 = 300 м

м

- средняя квадратическая невзвешенная

- средняя кубическая взвешенная

- средняя геометрическая

Основное применение средняя геометрическая находит при определении средних темпов роста.

Например:

Стоимость потребительской корзины за год в результате инфляции возросла в 6 раз. Каков среднемесячный темп инфляции?

;

или 116 %.

Среднемесячный темп инфляции составляет 16 %.

Например:

За 1 год объем производства вырос на 20 %, а за 2 год снизился на 20 %. Определить средний тем роста производства за 2 года.

1 год – 120 % (100+20)

2 год – 80 % (100-20)

Т.е. темп роста за 2 года снизился на 2,02 % (100-97,98).

Расчетная часть

1. По первичным данным таблицы 5 (в методическом указании 5.5) определите средний размер розничного товарооборота в расчете на одно предприятие торговли. Укажите вид средней.

2. Постройте статистический ряд распределения торговых предприятий по размеру товарооборота, образовав пять групп с равными интервалами, охарактеризовав их числом предприятий и удельным весом предприятий. По ряду распределения рассчитайте средний размер розничного товарооборота на одно торговое предприятие, взвешивая значение варьирующего признака:

а) по числу предприятий;

б) по удельному весу предприятий.

Сравните полученную среднюю с п.1 и поясните их расхождение.

3. За отчетный год имеются данные о кредитных операциях банков:

Таблица 4. Данные о кредитных операциях банков

Вид кредита Банк 1 Банк 2
Годовая процентная ставка Сумма кредита, млн. руб. Годовая процентная ставка Доход банка, млн. руб.
Краткосрочный Долгосрочный 20 16 500 150 21 15 126 30

Определите среднюю процентную ставку кредита:

а) по каждому банку;

б) по двум банкам.


Таблица 5. Розничный товарооборот и издержки обращения предприятий

№ п/п Розничный товарооборот Издержки обращения
А 1 2
1 510 30
2 560 33
3 800 46
4 465 31
5 225 16
6 390 25
7 640 39
8 405 26
9 200 15
10 425 34
11 570 37
12 472 28
13 250 19
14 665 38
15 650 36
16 620 35
17 380 24
18 550 38
19 750 44
20 660 36
21 450 27
22 563 34
23 400 26
24 553 38
25 772 45

Решение:

1. Для определения среднего размера розничного товарооборота в расчете на одно предприятие торговли воспользуемся формулой средней арифметической взвешенной

=(510*30+560*33+800*46+465*31+225*16+390*25+640*39++405*26+200*15+425*34+570*37+472*28+250*19+665*38+ +650*36+620*35+380*24+550*38+750*44+660*36+450*27+ +563*34+400*26+553*38+772*45):(30+33+46+31+16+25+39+ +26+15+34+37+28+19+38+36+35+24+38+44+36+27+34+26+ +38+45) = 444937: 800 =556,2

Средний размер розничного товарооборота в расчете на одно предприятие торговли составляет 556,2 млн. руб.

2. Для построения статистического ряда распределения торговых предприятий по размеру товарооборота с выделением пяти групп найдем величину равного интервала.

Величина равного интервала определяется по формуле:

, где где xmax и xmin – максимальное и минимальное значение признака, n – число групп.

В данной задаче величина интервала

.