Смекни!
smekni.com

Статистико экономический анализ социальной защищенности населения 2 (стр. 4 из 6)

n - число районов (24).

X2=1942,14

бy=(∑(yi-y) 2/n) 1/2; бy=4916,73 (2.3)

бх1=(∑(xi1-x1) 2/n) 1/2; бх1=1095 (2.4)

бх2=(∑(xi2-x1) 2/n) 1/2; бх2=59,46 (2.5)

Теперь можно определить β - коэффициенты и коэффициенты эластичности.

β1=0,40* бх1/ бy; β1=0,40*1095/4916,73=0,089 (2.6)

β2=7,76* бх2/ бy; β2=7,76*59,46/4916,73=0,094 (2.7)

Сопоставление β – коэффициентов показывает, что наиболее сильное влияние на варьирование результативного фактора оказывает среднемесячная номинально начисленная з/п работникам экономики, а менее сильное воздействие оказывает средний размер пенсий пенсионерам состоящих на учете в органах соцзащиты.

Э1=а1* X1/ ỹ; Э1=0,40*4224,9/1762,375=0,959 (2.8)

Э2=а1* X2/ ỹ; Э2=7,76*1942/1762,375=8,551 (2.9)

Первый коэффициент эластичности показывает, что при изменении среднемесячной номинально начисленной з/п на 1% средний размер вклада в сбербанк изменится на 0,959 руб. . Второй коэффициент эластичности показывает, что при среднем размере начисленной за месяц пенсий на 1% средний размер вклада изменится на 8,551 руб.

Таким образом, из анализа видно, что больше всего на средний размер вклада в сбербанк влияет среднемесячная номинально начисленная з/п работникам экономики. Меньше всего на средний размер вклада в сбербанк влияет средний размер начисленной за месяц пенсий.

Коэффициент множественной корреляции равен 0,69, он говорит о том, что связь сильная (приложение №2). Также был рассчитан коэффициент детерминации, который является квадратом коэффициент корреляции. Он показывает, насколько тесной является связь между выбранными показателями. В нашем случае он равен 0,481, т.е. связь между признаками средняя.

Проверка значимости коэффициента множественной корреляции показала, что Fрасч= 9,73, при значимости Fтабл. =3,10 при пятипроцентном уровне. Таким образом, Fрасч> Fтабл, что позволяет с вероятностью 95% утверждать существенность различий в величине дисперсий и соответственно сделать вывод об адекватности модели.

В качестве критериев проверки гипотез относительно двух средних используется критерий t - Стьюдента. Фактическое значение t=1,55, а табличное t=2,08, необходимо признать справедливость альтернативной гипотезы.

Полученные коэффициенты корреляции показывают, что связь между объемом платных услуг на душу населения, руб. и средней номинально начисленной з/п работникам в экономики, руб. более сильная (0,574), чем со средним размером начисленной за месяц пенсий пенсионерам, руб. (0,573).

Глава 3. Анализ динамических рядов

3.1 Природно-экономическая характеристика Сухиничиского района

Сухинический район, один из центральных районов Калужской области. В центре района пересекаются железная дорога и автомобильная магистраль. Развитие поселка связано со строительством Московско-Киевской железной дорогой. Шоссейная дорога Москва-Киев связывает Сухиничи с Калугой и Москвой. Район в целом расположен в пределах Мещовского ополья. Здесь господствуют ландшафты морено-эрозионных равнин со светло-серыми лесными почвами. На севере района небольшую площадь занимает ландшафты озерно-ледниковых равнин со светло-серыми лесными, нередко тяжело-суглинистыми почвами, на юге - ландшафты эрозионных равнин со светло-серыми лесными почвами, местами серыми лесными почвами. Лесистость района около 23.9%. В районе имеется месторождение строительных и силикатных песков, территории занимающие с/х угодия, имеют общую площадью 99402 га.

Специализация района молочно-мясное животноводство и растениеводство.

Выращивание зерновых, картофеля, в последние 5 лет возобновлены посевы проса. Показатели развития близки к средне-областным. На 1996 год в районе было 13 с/х предприятий, около 150 фермерских хозяйства (1998 год), 8500 личных подсобных хозяйства (2000 год), соответственно, на 2004 год – 14, более 100. В общественных и фермерских хозяйствах 5356 голов КРС, в том числе 2816 коров, у населения 1290 голов КРС, 1885 свиней.

Стоимость основных производственных фондов с/х назначения 325 млн. руб., энергооворуженность-52 л. с. на 1 работника, энергообеспеченность 141 л. с. на 100 га пашни. По площади земель, отведенной фермерским хозяйствам, район занимает второе место после Износковского района. В районе есть также 68 коллективных садов.

Районный центр соединен со всеми усадьбами колхозов и совхозов. Дороги территориального значения, пос. Газопровод.

3.2 Анализ рядов динамики

Важной задачей статистики является изучение явления во времени. Для решения этой задачи необходимо иметь данные по определенному кругу показателей на ряд моментов времени, следующих друг за другом.

Ряд расположенных в хронологической последовательности статистических показателей динамический ряд. Статистические показатели, характеризующие изучаемое явление называют уровнями ряда. Динамический ряд представляет собой последовательность уровней, сопоставляя которые между собой можно характеристику скорости и интенсивности развития явления. В результате сравнения уровней получается система относительных и абсолютных показателей динамики: абсолютный прирост, коэффициент роста, темп прироста, абсолютное значение одного процента прироста.

Выделяют базисные и цепные показатели динамики.

Показатели динамики с постоянной базой сравнения характеризуют окончательный результат всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до данного (i - го) периода. Показатели динамики с переменной базой сравнения характеризуют интенсивность изменения уровня от периода к периоду в пределах изучаемого явления.

Проанализируем изменения состояния Сухиничиского района в динамике за последние 10 лет.

Возьмем показателей численность пенсионеров состоящих в органах соцобеспечения (на конец года, на 1000 населения), численность инвалидов состоящих на учете в органах соцзащиты (на конец года, на 1000 населения), плотность населения.

Рассмотрим расчет показателей по ряду динамики численность пенсионеров состоящих в органах соцобеспечения (на конец года, на 1000 населения) (табл.3.1).

Таблица 3.1

Показатели динамики численность пенсионеров состоящих в органах соцобеспечения (на конец года, на 1000 населения).

Годы Значение Абсолютный прирост Темп роста Темп прироста Абсолютное значение 1% прироста
1995 247,5 - - - - - - -
1996 246,6 -0,9 -0,9 99,39 99,39 -0,61 0,61 1,48
1997 250,7 4,1 3,2 101,66 101,29 1,66 1,29 2,47
1998 246 -4,7 -1,5 98,13 99,39 -1,87 -0,61 2,51
1999 242,2 -3,8 -5,3 98,46 97,86 -1,54 -2,14 2,46
2000 241,3 -0,9 -6,2 99,63 97,45 -0,37 -2,55 2,43
2001 232,3 -9,1 -15,2 96,23 93,86 -3,77 -6,14 2,41
2002 227,2 -5 -20,3 97,85 91,8 -2,15 -8,2 2,33
2003 246,6 19,4 -0,9 108,54 99,64 8,54 -0,36 2,27
2004 245,2 -1,4 -2,3 99,43 99,07 -0,57 -0,93 2,45

Рассчитаем для данного динамического ряда средний уровень за период, который рассчитывается по формуле:

Ỹ=∑уi/n (3.1)

где, Ỹ - средний уровень за период;

∑уi-сумма значений;

n - число лет исследуемых в динамике.

Средний коэффициент роста:

Ќ=(Yn/Y0) 1/10 (3.2)

где, n - порядковый номер последнего уровня.

0 - первый порядковый номер.

Средний темп роста представляет собой средний коэффициент роста, выраженный в процентах.

Подставим необходимые значение в формулы, получаем, что средний уровень за период равен 242,56, средний коэффициент роста – 0,99, средний темп роста сократился на 0,1%.

Максимальное значение было достигнуто в 1997 году, и оно составило 250,7. Минимальное значение наблюдалось в 2002 году и равнялось 227,2.

Теперь рассмотрим численность инвалидов состоящих на учете в органах соцзащиты (на конец года, на 1000 населения) (табл.3.2).

Таблица 3.2

Показатели численность инвалидов состоящих на учете в органах соцзащиты (на конец года, на 1000 населения)

Годы Значение Абсолютный прирост Темп роста Темп прироста Абсолютное значение 1% прироста
1995 43,1 - - - - - - -
1996 38 -5,1 -5,1 88,17 88,17 -11,83 -11,83 0,43
1997 47,4 4,3 9,4 124,74 109,98 24,74 9,98 0,17
1998 47,8 4,7 0,4 100,84 110,9 0,84 10,9 5,59
1999 45,2 2,1 -2,6 94,56 104,87 5,44 0,87 0,39
2000 43 -0,1 -2,2 95,13 99,77 -4,87 -0,23 0,02
2001 42,6 -0,5 -0,4 99,07 98,84 -0,93 -1,16 0,54
2002 67,4 24,3 24,8 158,22 156,38 58,22 56,38 0,42
2003 68 24,9 0,6 100,89 157,77 0,89 57,77 27,98
2004 70 26,9 2 102,94 162,4 2,94 62,4 9,15

Аналогично рассчитаем средний уровень за данный период, средний коэффициент роста, средний темп роста. Средний уровень за данный период составил 51,25, средний коэффициент роста равен 1,001, средний темп роста равен 1%.

Проанализируем данные. Показатель в динамике изменяется от года в год. Максимальное значение было достигнуто в 2004 году и равнялось 70, а минимальное значение наблюдалось в 1996 году и равнялось 38.