Найдем внутригрупповую дисперсию по второй группе
Таблица 5.6 Расчетная таблица для расчета дисперсии по второй группе
№ п/п | y | y – | (y – )2 |
1 | 10,00 | -0,50 | 0,245 |
2 | 12,08 | 1,58 | 2,509 |
3 | 7,26 | -3,24 | 10,480 |
4 | 10,33 | -0,17 | 0,028 |
5 | 9,41 | -1,08 | 1,174 |
6 | 12,87 | 2,38 | 5,656 |
7 | 8,65 | -1,84 | 3,396 |
8 | 11,22 | 0,72 | 0,524 |
9 | 16,20 | 5,71 | 32,572 |
Сумма | - | - | 56,584 |
Найдем внутригрупповую дисперсию по третьей группе
Таблица 5.7 Расчетная таблица для расчета дисперсии по третьей группе
№ п/п | y | y – | (y – )2 |
1 | 13,24 | 2,46 | 6,031 |
2 | 9,41 | -1,37 | 1,882 |
3 | 8,48 | -2,30 | 5,284 |
4 | 10,43 | -0,35 | 0,125 |
5 | 10,83 | 0,05 | 0,002 |
6 | 9,86 | -0,92 | 0,844 |
7 | 13,23 | 2,44 | 5,964 |
Сумма | - | - | 20,133 |
Внутригрупповая дисперсия по четвертой группе будет равна нулю, т.к. в этой группе нет ни одного завода.
= 0Внутригрупповая дисперсия по пятой группе будет равна нулю, т.к. в этой группе только один завод.
= 0Найдем среднюю из внутригрупповых :
= (4,468 * 19 + 7,073 * 9 + 1,83 * 7 + 0 * 0 + 0 * 1) / 36 = 161,359 / 36 = 4,482Проверим правило сложения дисперсий
+ =4,168 + 4,482 = 8,865
= 8,864Т.е. правило сложения дисперсий выполняется.
Эмпирический коэффициент детерминации равен :
η2 = 4,168 / 8,864 = 0,47
Т.е. 47 % вариации результативного признака объясняется вариацией факторного признака.
Практическая работа №6
На основе данных табл. 5.1 об объемах продукции (
) и расчетов показателей производительности труда выполните следующие операции по расчету линии регрессии :- нанесите данные объемов производства и производительности труда на корреляционное поле;
- сделайте вывод о возможной форме связи между объемом продукции и производительностью труда;
- для выбранной формулы с помощью метода наименьших квадратов рассчитайте величины коэффициентов;
- нанесите на график корреляционного поля уравнение регрессии;
- рассчитайте для данной формы связи необходимые показатели, характеризующие тесноту связи производительности труда с объемами продукции.
Решение:
Построим корреляционное поле
По графику можно предположить линейный характер связи между объемом производства (х) и производительности труда (у).
Рассчитаем параметры уравнения линейной парной регрессии.
Для расчета параметров a и b уравнения линейной регрессии у = а + bx решим систему нормальных уравнений относительно а и b :
По исходным данным рассчитываем Sх , Sу, Sух , Sх2 , Sу2.
Таблица 6.1
t | y | x | yx | x2 | y2 |
1 | 1,70 | 6,07 | 10,3 | 36,86 | 2,9 |
2 | 4,80 | 10,00 | 48,0 | 100,00 | 23,0 |
3 | 3,70 | 8,81 | 32,6 | 77,61 | 13,7 |
4 | 6,10 | 12,08 | 73,7 | 145,91 | 37,2 |
5 | 9,40 | 13,24 | 124,5 | 175,28 | 88,4 |
6 | 9,60 | 9,41 | 90,4 | 88,58 | 92,2 |
7 | 2,10 | 4,29 | 9,0 | 18,37 | 4,4 |
8 | 2,60 | 5,20 | 13,5 | 27,04 | 6,8 |
9 | 4,50 | 7,26 | 32,7 | 52,68 | 20,3 |
10 | 8,40 | 8,48 | 71,3 | 71,99 | 70,6 |
11 | 9,70 | 10,43 | 101,2 | 108,79 | 94,1 |
12 | 2,30 | 5,35 | 12,3 | 28,61 | 5,3 |
13 | 3,40 | 6,07 | 20,6 | 36,86 | 11,6 |
14 | 6,30 | 10,33 | 65,1 | 106,66 | 39,7 |
15 | 9,80 | 10,83 | 106,1 | 117,26 | 96,0 |
16 | 7,30 | 9,86 | 72,0 | 97,32 | 53,3 |
17 | 1,80 | 4,62 | 8,3 | 21,30 | 3,2 |
18 | 2,60 | 6,05 | 15,7 | 36,56 | 6,8 |
19 | 4,80 | 9,41 | 45,2 | 88,58 | 23,0 |
20 | 16,10 | 12,88 | 207,4 | 165,89 | 259,2 |
21 | 1,30 | 3,82 | 5,0 | 14,62 | 1,7 |
22 | 2,30 | 5,90 | 13,6 | 34,78 | 5,3 |
23 | 1,30 | 5,20 | 6,8 | 27,04 | 1,7 |
24 | 3,40 | 6,94 | 23,6 | 48,15 | 11,6 |
25 | 5,60 | 12,87 | 72,1 | 165,73 | 31,4 |
26 | 2,20 | 8,46 | 18,6 | 71,60 | 4,8 |
27 | 1,90 | 8,44 | 16,0 | 71,31 | 3,6 |
28 | 6,10 | 8,65 | 52,8 | 74,87 | 37,2 |
29 | 8,20 | 13,23 | 108,5 | 174,92 | 67,2 |
30 | 3,60 | 11,61 | 41,8 | 134,86 | 13,0 |
31 | 4,60 | 11,22 | 51,6 | 125,88 | 21,2 |
32 | 2,50 | 10,64 | 26,6 | 113,17 | 6,3 |
33 | 3,40 | 8,61 | 29,3 | 74,09 | 11,6 |
34 | 6,40 | 16,20 | 103,7 | 262,52 | 41,0 |
35 | 2,30 | 6,57 | 15,1 | 43,18 | 5,3 |
36 | 1,80 | 9,00 | 16,2 | 81,00 | 3,2 |
Итого | 173,9 | 318,0353303 | 1760,9 | 3119,87 | 1217,5 |
Среднее | 4,83 | 8,83 | 48,9 | 86,7 | 33,8 |
Обозначение среднего |
Найдем дисперсию переменных
= 86,7 – 4,832 = 8,62 = 33,8 – 8,832 = 10,48Найдем параметры a и b уравнения линейной регрессии :
0,724 8,83 – 0,724 · 4,83 = – 1,57Уравнение регрессии :
= – 1,57 + 0,724 · хС увеличением среднего объема производства на 1 млн. руб. производительность труда увеличивается на 0,724 тыс. руб. / чел.
Нанесем линию регрессии на график корреляционного поля.
Рассчитаем линейный коэффициент парной корреляции:
Т.к. коэффициент от 0,3 до 0,7 связь средняя, прямая.
Практическая работа №7
Имеются данные об изменении себестоимости продукции в процессе освоения нового производства (табл. 7.1).
Таблица 7.1
Квартал | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Себестоимость единицы, руб. | 290 | 250 | 310 | 230 | 240 | 210 | 220 | 200 | 210 | 210 |
Рассчитайте для данного ряда динамики:
а) величины абсолютных изменений уровней ряда;
б) темпы изменения (%).
Постройте график и выберете формулу для аналитического выравнивания.
Рассчитайте ее параметры и нанесите теоретическую линию регрессии на график.
Решение:
Рассчитаем показатели динамики по следующим формулам:
Абсолютный прирост базисный:
Diбаз = Yi – Y1 ,
где Y1 – размер показателя в первом году, Yi – размер показателя в i-ом году. Абсолютный прирост цепной:
Di цеп = Yi – Yi-1 ,
где Yi–1 – размер показателя в предшествующий i-му год.
Темп роста базисный:
Тр баз = (Yi / Y1)·100 .
Темп роста цепной:
Тр цеп = (Yi / Yi–1)·100 .
Темп прироста базисный:
Тпр баз = Тр баз – 100 .
Темп прироста цепной:
Тпр цеп = Тр цеп – 100 .
Рассчитанные показатели сведем в таблицу