Построим график исходных данных.
Рис. 2. График исходных данных.
По графику видно, что временной ряд характеризуется сначала тенденцией возрастания до 2000г., а затем убывания. Можно предположить, что данный ряд, вероятно, развивается согласно полиномиальной функции, которая описывается параболой второго порядка:
Система нормальных уравнений для расчета параметров параболы 2-ой степени составит:
год | тыс.чел. | t | t2 | t3 | t4 | yt | yt2 |
1992 | 29,3 | 1 | 1 | 1 | 1 | 29,3 | 29,3 |
1993 | 29,25 | 2 | 4 | 8 | 16 | 58,5 | 117 |
1994 | 48,03 | 3 | 9 | 27 | 81 | 144,09 | 432,27 |
1995 | 60,06 | 4 | 16 | 64 | 256 | 240,24 | 960,96 |
1996 | 66,39 | 5 | 25 | 125 | 625 | 331,95 | 1659,75 |
1997 | 96,26 | 6 | 36 | 216 | 1296 | 577,56 | 3465,36 |
1998 | 93,59 | 7 | 49 | 343 | 2401 | 655,13 | 4585,91 |
1999 | 84,74 | 8 | 64 | 512 | 4096 | 677,92 | 5423,36 |
2000 | 92,91 | 9 | 81 | 729 | 6561 | 836,19 | 7525,71 |
2001 | 81,26 | 10 | 100 | 1000 | 10000 | 812,6 | 8126 |
2002 | 69,73 | 11 | 121 | 1331 | 14641 | 767,03 | 8437,33 |
2003 | 76,85 | 12 | 144 | 1728 | 20736 | 922,2 | 11066,4 |
2004 | 67,9 | 13 | 169 | 2197 | 28561 | 882,7 | 11475,1 |
2005 | 54,13 | 14 | 196 | 2744 | 38416 | 757,82 | 10609,5 |
итого | 950,4 | 105 | 1015 | 11025 | 127687 | 7693,23 | 73913,9 |
Решив систему, получим параметры уравнения тренда:
а=13,37; b=13,94; c=-1,0017.
Соответственно уравнение тренда составит: у =13,37+13,94t-1,0017t2
где: S2- остаточная уточнённая дисперсия; mа, mв, mr- ошибки по параметрам.
После подстановки значений получились следующие данные:
Предположим, что параметры и коэффициент корреляции стат.
значимы. Для расчёта использую следующие формулы:
где: ta , tb , tr - расчётное значение t-критерия Стьюдента для параметров.
После подстановки данных в формулы получил следующие значения:
Сравним полученное значение с табличным t-критерием Стьюдента. tтабличное при Р=0,05 и (n-2)= 2,1788. Так как tрасчётное > tтабличное , то параметры b и r уравнения типичны (значимы). Так как tрасчётное < tтабличное , то параметры с и а незначимы.
Оценим уравнение в целом по критерию Фишера, выдвигаем гипотезу Н0:о том, что коэффициент регрессии равен нулю.
Fф=Dфакт/Dост=10333,6/906,597=11,398.
FT(v1=1;v2=12)=4,75.
Т.к. Fф > FT при 5%-ном уровне значимости гипотеза Н0 отвергается, уравнение в целом стат. значимо.
5. Автокорреляция уровней временного ряда.
Для выбора прогностической модели необходимо исследовать автокорреляцию уровней динамического ряда, т.е. изучить корреляционную связь между последовательными значениями уровней временного ряда.
Таблица 9. Расчет коэффициента автокорреляции.
год | тыс.чел. | yt-1 | yt-2 | yt-3 |
1992 | 29,3 | - | - | - |
1993 | 29,25 | 29,3 | - | - |
1994 | 48,03 | 29,25 | 29,3 | - |
1995 | 60,06 | 48,03 | 29,25 | 29,3 |
1996 | 66,39 | 60,06 | 48,03 | 29,25 |
1997 | 96,26 | 66,39 | 60,06 | 48,03 |
1998 | 93,59 | 96,26 | 66,39 | 60,06 |
1999 | 84,74 | 93,59 | 96,26 | 66,39 |
2000 | 92,91 | 84,74 | 93,59 | 96,26 |
2001 | 81,26 | 92,91 | 84,74 | 93,59 |
2002 | 69,73 | 81,26 | 92,91 | 84,74 |
2003 | 76,85 | 69,73 | 81,26 | 92,91 |
2004 | 67,9 | 76,85 | 69,73 | 81,26 |
2005 | 54,13 | 67,9 | 76,85 | 69,73 |
итого | 950,4 | 896,27 | 828,37 | 751,52 |
По данному ряду определяю серию коэффициентов автокорреляции (автокорреляционную функцию):
ra1=0,809, ra2=0,52, ra3=0,233, ra4=-0,421, ra5=-0,854, ra6=-0,746, ra7=-0,894, ra8=-0,907, ra9=-0,735, ra10=-0,898, ra11=-0,919.
Построим график автокорреляционной функции.
Рис. 3. Коррелограмма для ряда численности безработных в РБ за 1992-2005гг.
Коррелограмма представляет собой затухающую функцию. По графику видно, что наиболее высоким оказался ra1=0,809, т.е. уровни текущего года на 80,9% обусловлены уровнями предыдущего года. Поэтому ряд содержит только тенденцию и не содержит периодических колебаний. В данном ряду отсутствует трендовая компонента Т и циклическая (сезонная) компонента S.
3.3. Многофакторный корреляционно – регрессионный анализ безработицы
Таблица 10. Исходные данные.
год | Уровень безраб-цы | Индекс ВРП | Доход на душу насел-я | Доля пенсионеров |
1992 | 5,8 | 77,3 | 51,7 | 18,7 |
1993 | 5,9 | 93,3 | 137,4 | 19,6 |
1994 | 9,8 | 85,5 | 11,2 | 20,2 |
1995 | 12,7 | 86,2 | 83,7 | 20,9 |
1996 | 14,9 | 93,5 | 89,6 | 21,5 |
1997 | 21,3 | 102,2 | 130,5 | 22,1 |
1998 | 22,2 | 94,2 | 72,2 | 22,5 |
1999 | 17,3 | 108 | 99,9 | 22,8 |
2000 | 19,1 | 104,9 | 111,2 | 22,9 |
2001 | 18,4 | 106,4 | 110,2 | 23,2 |
2002 | 15,4 | 106,4 | 121,5 | 23,3 |
2003 | 16,8 | 106,7 | 104,5 | 23,3 |
2004 | 15,3 | 103,7 | 104,4 | 23,5 |
2005 | 12 | 104,8 | 111,3 | 23,8 |
итого | 206,9 | 1373,1 | 1339,3 | 308,3 |
средн | 14,779 | 98,079 | 95,664 | 22,0214 |
Для корреляционно-регрессионного анализа необходимо из нескольких факторов произвести предварительный отбор факторов для регрессионной модели. Сделаем это по итогам расчета коэффициента корреляции. А именно возьмем те факторы, связь которых с результативным признаком будет выражена в большей степени. Начнем наш анализ с рассмотрения следующих факторов:
- Индекс ВРП - x1 (%)
- Доход на душу населения – x2 (%)
- Доля пенсионеров - x3 (%)
Рассчитаем коэффициент корреляции для линейной связи и для имеющихся факторов - x1, x2 и x3. Коэффициент корреляции определяется по следующей формуле:
где:
и – дисперсии факторного и результативного признака соответственно; xy – среднее значение суммы произведений значений факторного и результативного признака; xи y – средние значения факторного и результативного признака соответственно.Для фактора x1 получаем коэффициент корреляции r1: r1= 0,627
Для фактора x2 получаем коэффициент корреляции r2: r2 =0,295
Для фактора x3 получаем коэффициент корреляции r3: r3=0,717
По полученным данным можно сделать вывод о том, что:
1)Связь между x1 и y прямая (так как коэффициент корреляции положительный) и умеренно сильная. Поэтому, будем использовать фактор в дальнейших расчётах.
2)Связь между x2 и y прямая (так как коэффициент корреляции положительный) и умеренная, так как она находится между 0,21 и 0,30. Таким образом, возникает необходимость исключить данный фактор из дальнейших исследований.
3)Связь между x3 и y прямая (так как коэффициент корреляции положительный) и сильная. Также будем использовать данный фактор в дальнейших расчетах.
Таким образом, два наиболее влиятельных фактора - индекс ВРП и доля пенсионеров. Для имеющихся факторов x1 и x3 составим уравнение множественной регрессии. Для анализа воспользуемся линейной формой связи, т.е. составим линейное уравнение, т.к. линейное уравнение легче подвергать анализу, интерпретации.
Проверим факторы на мультиколлинеарность, для чего рассчитаем коэффициент корреляции rx1x3:
где:
и – дисперсии факторного и результативного признака соответственно; x,y – среднее значение суммы произведений значений факторного и результативного признака; xи y – средние значения факторного и результативного признака соответственно.