Подставив имеющиеся данные (из таблицы 10) в формулу, имеем следующее значение: rx1x3=0,8998.Полученный коэффициент говорит об очень высокой связи, поэтому дальнейший анализ по обоим факторам вестись не может. Однако в учебных целях продолжим анализ.
Проводим оценку существенности связи с помощью коэффициента множественной корреляции:
где: ryx1 – коэффициент корреляции между y и x1; ryx3 – коэффициент корреляции между y и x3; rx1x3 – коэффициент корреляции между x1 и x3.
Подставив имеющиеся данные в формулу и получим: R=0,717
Так как R < 0,8, то связь признаем не существенной, но, тем не менее, в учебных целях, проводим дальнейшее исследование.
Для определения параметров уравнения необходимо решить систему:
Решив систему, получим уравнение: Ŷ=14,72+0,00023 x1+0,00086x3
Для данного уравнения найдем ошибку аппроксимации:
А> 5%, то данную модель нельзя использовать на практике.
Проведем оценку параметров на типичность. Рассчитаем значения величин:
S2=28,039
ma=1,415; mb=0,023; mс=0,8404;
ta=10,403; tb=0,01; tc=0,001.
Сравним полученные выше значения t для α = 0,05 и числа степеней свободы (n-2)с теоретическим значением t-критерия Стьюдента, который tтеор = 2,1788. Расчетные значения tbи tс < tтеор, значит данные параметры не значимы и данное уравнение не используется для прогнозирования.
Далее оценим существенность совокупного коэффициента множественной корреляции на основе F-критерия Фишера по формуле:
где: n – число уровней ряда; к – число параметров; R – коэффициент множественной корреляции.
После расчета получаем: F=5,819
Сравним Fрасч с Fтеор для числа степеней свободы U1 = 9 и U2 = 2, видим, что 0,045 < 19,40, то есть Fрасч < Fтеор - связь признаётся не существенной, то есть корреляция между факторами x1, x3 и у не существенна.
3.4. Прогнозирование безработицы
Определив наличие тенденции, можно начать прогнозирование. Прогнозирование проводится следующими методами:
1)на основе средних показателей динамики;
2)на основе экстраполяции тренда;
3)на основе скользящих и экспоненциальных средних.
I. Сначала проведем прогнозирование методом среднего абсолютного прироста. Для этого надо проверить выполняются ли предпосылки. Вычисляем данные для подстановки в формулы предпосылок:
ρ2= 310,14
σ2ост = 250,11
т.к. σ2ост< ρ2 , условие выполняется, значит можно строить прогноз на основе среднего абсолютного прироста. Вычислим средний абсолютный прирост:
, где yp- прогнозируемый уровень; yb- конечный уровень ряда как наиболее близкий к прогнозируемому; L-период упреждения; ∆- средний абс.прирост.Подставляем значения yb=54,13 L=1 ∆=1,91 в функцию прогноза:
yp=54,13+1,91*1=56,04 – прогноз на 2006г.
yp=54,13+1,91*2=57,95 – прогноз на 2007г.
Фактически численность безработных в 2006г. составила 60,6 тыс.чел.
Вычислим ошибку прогноза для сравнения методов прогнозирования на точность: 60,6-56,04=4,56 тыс.чел.
Теперь составим прогноз методом среднего темпа роста. Вычислим средний темп роста: yp= yb*КL
=1,0096Подставим это значение в формулу и составим прогноз на 2006г.:
yp=54,13*1,00961=54,65
Вычислим ошибку: 60,6-54,65=5,95тыс.чел.
Так как ошибка при прогнозировании методом среднего абсолютного прироста меньше ошибки при прогнозировании методом среднего темпа роста, то можно сделать вывод, что прогнозирование первым методом дает более точные результаты. Поэтому мы оставляем для анализа результатов данные прогноза полученные методом среднего абсолютного прироста. Составим диаграмму при прогнозировании методом абсолютного прироста.
Рис. 4.Численность безработных при прогнозировании «методом абсолютного прироста»
II. Следующий способ прогнозирования - методом экстраполяции тренда.
Ранее по аналитическому выравниванию нашли уравнение параболы второй степени: у =13,37+13,94t-1,0017t2
Сделаем прогноз на 2006г., примем t=7, т.к. нумерация дат определена с середины ряда, т.е. ∑t=0.
уp=13,37+13,94*7-1,0017*49=60,87 – прогноз на 2006г.
Определим доверительный интервал прогноза, в основе которого лежит показатель колеблемости уровней ряда. Колеблемость уровней ряда определяется по формуле: Sy=
Sy=91,44
Интервал определяется с помощью ошибки прогноза Sp= Sy*Q, где Q- поправочный коэффициент, учитывающий период упреждения.
Q= = 1,2127
Тогда ошибка прогноза: Sp=91,44*1,2127=110,886
Соответственно доверительный интервал прогноза составит: уp+t*Sp, где t-табличное значение t-критерия Стьюдента. При ά=0,05 и числе степеней свободы n-3= 11 t=2,2010.
уp+2,2010*110,886 или 61,87 +244,061, т.е. -182,2< уp <305,93
Значит, прогнозная величина находится в данном интервале.
Рис.5. Численность безработных при прогнозировании «методом экстраполяции тренда»
III. Метод скользящих и экспоненциальных средних.
Ранее в своих расчетах я определила, что ряд не содержит периодических колебаний и отсутствуют трендовая компонента Т и циклическая (сезонная) компонента S. Поэтому нет необходимости использовать метод скользящих средних.
Метод экспоненциальных средних.
Экспоненциальное сглаживание является простым методом, который в ряде наблюдений позволяет строить приемлемые прогнозы наблюдаемых временных рядов. Суть метода в том, что исходный ряд x(t) сглаживается с некоторыми экспоненциальными весами, образуется новый временной ряд S(t) (с меньшим уровнем шума), поведение которого можно прогнозировать.
Веса в экспоненциальных средних устанавливаются в виде коэффициентов ά(|ά|<1). В качестве весов используется ряд:
ά; ά(1- ά); ά(1- ά)2; ά(1- ά)3 и т.д.
Экспоненциальная средняя определяется по формуле:
где Qt– экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; ά- вес текущего наблюдения при расчете экспонен. средней; yt–фактический уровень ряда; Qt-1-экспонен. средняя предыдущего периода.
Каждый новый прогноз основывается на предыдущем прогнозе:
St= St-1+ά(yt -1- St-1),
где St- прогноз для периода t; St-1-прогноз предыдущего периода; ά- сглаживающая константа; yt -1- предыдущий уровень.
Например, St=29,3+0,5*(29,25-29,3)=29,275.
При прогнозе учитывается ошибка предыдущего прогноза, т.е. каждый новый прогноз Stполучается в результате корректировки предыдущего прогноза с учетом ошибки.
Таблица 12. Расчет прогноза и ошибки.
1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |
yt | 29,3 | 29,25 | 48,03 | 60,06 | 66,39 | 96,26 | 93,59 | 84,74 | 92,91 | 81,26 | 69,73 | 76,85 | 67,9 | 54,13 | - |
прогноз | - | 29,3 | 29,28 | 38,65 | 49,36 | 57,87 | 77,07 | 85,33 | 85,03 | 88,97 | 85,12 | 77,42 | 77,14 | 72,52 | 60,32 |
ошибка | - | -0,05 | 18,76 | 21,41 | 17,03 | 38,39 | 16,52 | -0,59 | 7,876 | -7,71 | -15,4 | -0,57 | -9,24 | -18,4 | - |
Рис. 6. Экспоненциальное сглаживание.
При прогнозировании могут использоваться экспоненциальные средние более высоких порядков, полученные путем многократного сглаживания. Экспоненциальная средняя К-го порядка:
Qt(к)= ά Qt(к-1)+(1- ά) Qt-1(к)
Экспоненциальные средние 2-го, 3-го порядка применяются в адаптивном прогнозировании по полиномиальным моделям. Для прогноза использован линейный тренд: y=a+bt. Его параметры связаны с экспоненциальными средними 1-го (Qt(1)) и 2-го (Qt(2)) порядков:
соответственно:
Необходимо задать начальные условия Qt-1к:
Линейный тренд: уt=49,25+2,49t
Параметр сглаживания ά определим: ά=2/(n+1).
Так как n=14, то ά=2/(14+1)=0,13.