Смекни!
smekni.com

Теория вероятности (стр. 1 из 5)

Вероятность и распределение вероятности.

1. Предмет теории вероятности. Вероятность и статистика.

2. Основные категории теории вероятности.

3. Классическое и статистическое определение вероятности.

4. Теорема сложения вероятностей.

5. Теорема умножения вероятностей.

6. Следствие теорем сложения и умножения вероятностей.

7. Вероятность гипотез. Формула Байеса.

8. Независимые события. Биномиальное распределение.

9. Вероятность редких событий. Формула Пуассона.

10. Локальная теорема де Муавра-Лапласа.

11. Интегральная формула Лапласа.

12. Зависимые события. Гипергеометрическое распределение.

13. Нормальное распределение.

14. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона.

1. Предмет теории вероятности. Вероятность и статистика.

Теория вероятности и математическая статистика – это наука, занимающаяся изучением закономерностей массовых случайных явлений, то есть статистических закономерностей. Такие же закономерности, только в более узкой предметной области социально-экономических явлений, изучает статистика. Между этими науками имеется общность методологии и высокая степень взаимосвязи. Практически любые выводы сделанные статистикой рассматриваются как вероятностные.

Особенно наглядно вероятностный характер статистических исследований проявляется в выборочном методе, поскольку любой вывод сделанный по результатам выборки оценивается с заданной вероятностью.

С развитием рынка постепенно сращивается вероятность и статистика, особенно наглядно это проявляется в управлении рисками, товарными запасами, портфелем ценных бумаг и т.п. За рубежом теория вероятности и математическая статистика применятся очень широко. В нашей стране пока широко применяется в управлении качеством продукции, поэтому распространение и внедрение в практику методов теории вероятности актуальная задача.

2. Основные категории теории вероятности.

Как и всякая наука, теория вероятности и математическая статистика оперируют рядом основных категорий:

- События;

- Вероятность;

- Случайность;

- Распределение вероятностей и т.д.

События – называется произвольное множество некоторого множества всех возможных исходов, могут быть:

- Достоверные;

- Невозможные;

- Случайные.

Достоверным называется событие, которое заведомо произойдет при соблюдении определенных условий.

Невозможным называется событие, которое заведомо не произойдет при соблюдении определенных условий.

Случайным называют события, которые могут произойти либо не произойти при соблюдении определенных условий.

События называют единственновозможными, если наступление одного из них это событие достоверное.

События называют равновозможными, если ни одно из них не является более возможным, чем другие.

События называют несовместимыми, если появление одного из них исключает возможность появления другого в том же испытании.

3. Классическое и статистическое определение вероятности.

Вероятность – численная характеристика реальности появления того или иного события.

Классическое определение вероятности: если множество возможных исходов конечное число, то вероятностью события Е считается отношение числа исходов благоприятствующих этому событию к общему числу единственновозможных равновозможных исходов.

Множество возможных исходов в теории вероятности называется пространством элементарных событий.

Пространство элементарных событий всегда можно описать числом nS=2, nS=6.

Если обозначить число исходов благоприятствующих событию n(E), то вероятность события Е будет выглядеть

. Для наших примеров
.

Исходя из классического определения вероятности, можно вывести ее основные свойства:

1) Вероятность достоверного события равна 1.

2) Вероятность невозможного события равна 0.

3) Вероятность случайного события находится в пределах от 0 до 1.

Классическое определение вероятности связано с непосредственным подсчетом вероятности, требует точного знания числа всех возможных исходов, и удобно для расчета вероятности достаточно простых событий.

Расчет вероятности более сложных событий - это сложная задача, требующая определения чисел всех возможных комбинаций появления этих событий. Подобными расчетами занимается специальная наука – комбинаторика. Поэтому на практике часто используется статистическое определение вероятности.

Цена, руб./кг

Объем продаж, т

Доля в общем объеме продаж

15

45

0,45

20

35

0,35

25

20

0,2

100

1,0

Доказано, что при многократном повторении опыта частости довольно устойчивы и колеблятся около некоторого постоянного числа, представляющего собой вероятность события.

Таким образом, в условиях массовых испытаний распределение частостей превращается в распределение вероятности случайной перемены.

Достоинство статистического определения вероятности в том, что для ее расчета не обязательно знать конечное число исходов.

Если классическое определение вероятности осуществляется априори (до опыта), то статистическое апосториори (после опыта по результатам).

Распределение частостей дискретного ряда, выраженных конечными числами, называется дискретным распределением вероятности.

Если осуществляются исследования массовых событий частостей, которые распределяются непрерывно и могут быть выражены какой-либо функцией, называются непрерывным распределением вероятности.

На графике такое распределение отражается непрерывной плавной линией, а площадь ограниченная этой линией и осью абсцисс всегда равна 1.

4. Теорема сложения вероятностей.

Суммой или объединением событий Е1 и Е2, называют событием Е, состоящим в появлении события Е1 или Е2 или обоих этих событий.

Площадь прямоугольника – это пространство элементарных событий (число единственно возможных равновозможных исходов). Площади кругов Е1 и Е2 соответственно – это числа исходов благоприятствующих событиям Е1 и Е2.

- число появлений исходов благоприятствующих событиям Е1 или Е2 или обоих этих событий.

То есть вероятность появления хотя бы одного из двух несовместимых событий равна сумме вероятности этих событий.

Данная формула является частным случаем теоремы сложения вероятностей.

Доказывается общий случай теоремы методом математической индукции, путем последовательной разбивки сложного события на пары.

Пример: По результатам наблюдения за продажей мужских костюмов получены следующие данные о вероятности продажи костюмов разных размеров.

Размер 48 50 52 54 56 58 60
Вероятность 0,16 0,22 0,2 0,19 0,07 0,05 0,02

Совокупность единственно возможных событий называется полной группой или полной системой.

Сумма вероятностей событий, образующих полную систему равна 1.

образуют полную систему, тогда вероятность появления хотя бы одного события равна 1.

В то же время

не совместны, тогда по теории сложения вероятностей
.

Пример: Из каждых 10 посетителей магазина 6 не делают покупок.

Вероятность появления хотя бы одного из этих событий равна 1.

Два единовременно возможных события, образующих полную группу, называются противоположными (например: орел и решка).

Сумма вероятностей противоположных событий равна 1.

Если случайное событие Е имеет весьма малую вероятность, то практически можно считать, что в единичном испытании это событие не произойдет. Если

.