Смекни!
smekni.com

Шпора по статистике (стр. 3 из 9)

При расчете средних чаще всего применяют формулы средних взвешенных. Формулы № 4, 5 употребляются в тех случаях, когда варианты усредняемого признака не повторяются или не произведена их группировка. Такое разграничение на простые средние и взвешенные очень важно в экономике, потом что применение только простых вместо средне взвешенных может привести к ошибочным результатам и выводам.

Вариация в рядах распределения.

Проведение вариационного анализа начинается с построения вариационного ряда – упорядоченное распределение единиц совокупности по возрастающим или по убывающим признакам и подсчет соответствующих частот.

Ряды распределения:

1. Ранжированный вариационный ряд – перечень отдельных ед. совокупности в порядке возрастания убывания ранжированного признака

2. Дискретный вариационный ряд – таблица, состоящая из 2х строк – полимерных значений варьирующего признака и кол-во единиц с данным значением признака.

3. Интервальный вариационный ряд строится в случаях:

— признак принимает дискретные значения, но кол-во их слишком велико

— признака принимает любые значения в определенном диапазоне

При построении интервального вариационного ряда необходимо выбрать оптимальное количество групп, самый распространенный способ по формуле Стерджесса

k=1+3.32lgn

k – количество интервалов

n – объем совокупности

При расчетах почти всегда получают дробные значения, округления производить до целого числа.

Длина интервала – l

Виды интервалов

1. Нижняя граница последующего интервала повторяет верхнюю границу последующего интервала

2. С индивидуальными границами в интервал входят верхняя и нижняя границы

3. Открытый интервал, интервал с одной границей

В случае открытого интервала l принимается равной длине смежного с ним интервала, либо исходя из логических соображений.

При расчетах по интервальному вариационному ряду за xi принимается середина интервала.

Интервалы могут быть как равные так и нет. При изучении вариационного ряда существенную помощь оказывает графическое изображение.

Дискретный вариационный ряд изображается с помощью полигона.(fi от xi)

Интервальный вариационный ряд изображается с помощью гистограммы. .(fi от xi)

Накопленная частота – каждая последующая частота прибавляется к следующей.

Кумулята – распределение ‘меньше чем’

Огива – распределение ‘больше чем’

Мода и медиана.

В некоторых случаях в статистике для определения типичных характеристик, особенно для отдельных размеров признака, применяют моду и медиану.

Мода

Мода обычно применяется тогда, когда сложно исчислить средние размеры признака. В статистике модой называется величина признака чаще всего встречающегося в данной совокупности.

, где

- мода,

- начальная граница модального признака, т.е. признака, обладающего наибольшей численностью в данном распределении,

- величина модального интервала,

- частота интервала, предшествующего модальному,

- частота интервала, следующего за модальным.

Медиана

Медианой называется вариант, делящий численность упорядоченного вариационного ряда, т.е. построенного в порядке возрастания или убывания варьирующего признака на две равные части. Для четного ряда следует принимать среднее значение из двух вариантов, находящихся в середине ряда.

Показатели вариации

Размах вариации

Все признаки, отмеченные в статистике, подвержены колебанию. Самым простым показателем такой колеблимости любого признака является размах вариации. В общем случае он представляет собой разность между наибольшим и наименьшим значением признака.

Размах вариации зависит от двух значений признака, что в экономике означает неточность определения.

Среднее линейное отклонение

Измерителем среднего линейного отклонения считается величина отклонений от средней, взятых без учета алгебраического знака. Исчисленная таким образом величина среднего отклонения называется средним линейным отклонением.

В практике следует иметь в виду, что величины линейного отклонения различных вариационных рядов можно сравнить лишь в том случае, если эти ряды характеризуются примерно одинаковыми средними. А т.к. это бывает в практике не всегда, то для сопоставления колеблимости исчисляются относительные показатели колеблимости, т.е. относят линейные отклонения к арифметической средней.

Используя ранее принятые обозначения варьирующего признака, веса и средней, можно порядок расчета среднего линейного отклонения записать в виде формулы

.

Но в случае, если варианты в распределении признака не повторяются, то среднее линейное отклонение рассчитывается по следующей формуле:

Дисперсия и среднее квадратичное отклонение

Средний показатель из отклонений от средней может быть так же получен, если сначала все отклонения возвести в квадрат, затем найти из квадратов среднеарифметическую, а затем из полученной величины извлечь квадратный корень. Полученный таким образом показатель называется среднем арифметическим отклонением (

). Среднее арифметическое из квадрата отклонений называется дисперсией (
).

- средний квадрат отклонения, взвешенный;

- средний квадрат отклонения, невзвешенный.

Коэффициент вариации.

Очень часто для сравнения степени колеблимости, особенно различных вариационных рядов, исчисляют коэффициент вариации. Для того чтобы его вычислить, надо среднее квадратичное отклонение отнести к средне арифметическому, и этот результат выражается в процентах.

- остаточная дисперсия по j группе

- сумма частот по j группе

n – общая сумма частот

Ряды динамики. Классификация и понятие динамических рядов.

Для лучшей характеристики экономической ситуации и процессов используют ряды динамики. Они дают более четкое, наглядное представление о явлении и совокупности.

Рядом динамики называется ряд статистических данных, характеризующий изменение явления во времени. Каждое значение в этом ряду называется уровнем, Цифры, образующие ряд динамики, могут характеризовать величину изучаемого явления двояко:

1. за определенный период времени;

2. состояние на определенный момент времени.

В связи с этим в статистике различают:

1. интервальные ряды динамики – такие ряды, которые состоят из количественных значений показателя за какой-то период времени;

2. моментальные ряды – такой ряд, который характеризует размеры какого-либо показателя по состоянию на определенную дату.

Уровни ряда динамики могут выражать как абсолютные размеры явления, так и относительные. Различают

1. ряды динамики абсолютных величин – такие ряды, члены которых выражают абсолютные значения изучаемого показателя за ряд последовательных моментов;

2. ряды динамики относительных величин – такие ряды, члены которых выражают относительные размеры изучаемого явления за ряд интервалов.

Виды дисперсии: 1. Общая дисперсия - измеряет вариацию признака во всей совокупности под влиянием все факторов обусловивших данную вариацию Пример: потребление йогурта: при выборке 100 человек
2. Межгрупповая дисперсия - характеризует вариацию признака под влиянием признака фактора положенного в основу группировки.
- средняя по группе 2. Внутригрупповая дисперсия (остаточная)
характеризует вариацию признака под влиянием факторов, не включенных в группировку
xij – i значение признака в j группе
- среднее значение признака в j группе fij – частота i-го признака в j группе Существует правило которое связывает 3 вида дисперсии, оно называется правило сложения дисперсии.

Есть еще в расчетах ряды динамики средних величин – такой ряд, члены которого выражают средний уровень изучаемого показателя за какие-то промежутки времени.