Смекни!
smekni.com

Шпора по статистике (стр. 4 из 9)

Для характеристики ряда динамических показателей применяют следующее:

1. уровень,

2. абсолютный прирост,

3. темп роста,

4. темп прироста,

5. среднее значение показателей.

Уровень ряда динамики

Исходным, при построении любого динамического ряда, является уровень динамики, но для общей характеристики за весь охватываемый период рассчитывают средний уровень ряда, т.е. среднюю величину из всех совокупностей ряда. В рядах динамики средняя из уровней называется хронологической средней. Для интервального ряда с равным интервалом времени находится, как простая средняя арифметическая, т.е. сумма всех уровней отнесенное на число уровней.

Средний уровень дает общее представление и развитие явления не за определенные моменты, а за весь процесс.

Абсолютный прирост

Для характеристики динамики рядов используют абсолютный прирост, представляющий собой разность уровней ряда динамики

. Абсолютный прирост показателей либо увеличивает прирост показателей, либо увеличение уровня ряда за определенный период времени. Чтобы определить размер увеличения показателя за весь период времени, охватываемый ряд динамики, находят общий абсолютный прирост, который равен сумме последовательно вычисляемых абсолютных приростов, и вместе с тем, он равен разности между конечным и начальным уровнем.

Для характеристики абсолютного прироста за тот или иной период времени в целом, часто определяют средний абсолютный прирост.

, где

m – число абсолютных приростов за равные периоды.


Темпы роста, прироста и их вычисление.

Поскольку абсолютный прирост показателей, на сколько единиц в абсолютном выражении, уровень последующего периода больше или меньше уровня предшествующего, то мы не можем получить ответ на вопрос во сколько раз уровень одного периода больше или меньше уровня другого. Поэтому в статистике используют показатель темпа роста, т.е. отношение уровня данного периода к уровню периода ему предшествующего. Иногда используют не предшествующее значение, а другое, принятое за базу.

Обычно темпы роста выражаются в виде процентов, либо в виде простых отношений и коэффициентов. Темпы, выраженные в виде простых отношений, называют коэффициентом роста.

Для характеристики уровня показателя во времени, наряду с темпами роста, применяют и другой показатель – темп прироста, т.е. отношение абсолютного прироста к уровню, принятому за базу сравнения. Темпы роста и темпы прироста, рассчитанные по одной и той же базе, называются базисными, темпы роста и прироста, рассчитанные к переменной базе сравнения называют цепными.

При возрастании уровней ряда динамики темпы прироста будут значениями положительными, а при убывании – отрицательными, что зависит от абсолютного прироста, который в первом случае имеет знак плюс, а во втором – минус.

Расчет цепных и базисных показателей роста:

- цепные;

- базисные.

Расчет цепных и базисных показателей прироста:

- цепные;

- базисные.

Вычисление средних темпов роста и прироста

Вычисляемые цепные темпы роста и прироста дают характеристику совокупности от одного промежутка времени к другому. Но в практике бывают ситуации, когда необходимо для общей характеристики процесса исчислить темп показателя за весь период, характеризуемый рядом динамики.

В качестве характеристики используют средний темп роста, который характеризуется средней геометрической всех цепных темпов.

- средняя геометрическая,

- средняя геометрическая применительно к темпам роста, где

- цепные коэффициенты роста, рассчитанные на основе последовательных значений.

Число цепных коэффициентов всегда на единицу меньше числа членов динамики. Т.к.

,
и т.д., то формула для расчета средних темпов:

Интерполяция и экстраполяция рядов в динамике

В статистике бывают случаи, когда в ряду динамики не достает данных за какой-либо промежуток времени или нужно определить уровень явления на будущее, т.е. уходя за пределы данного ряда.

Интерполяция – нахождение неизвестного промежуточного члена ряда динамики. Наиболее простым примером расчета интерполяции является следующий расчет: из двух членов ряда динамики непосредственно примыкающих к неизвестному члену ряда находится средняя величина, которая принимается за исходный показатель. Иногда для большей достоверности расчетов берут не один, а два или более промежуточных уровней, и находят из средней.

Экстраполяция – нахождение члена ряда динамики в перспективе (на будущее). Широко применяется экстраполяция при планировании развития производства.

Понятие корреляции связи.

Функциональная связь y=5x

Корреляционная связь

Различают 2 типа связей меду различными явлениями и их признаком функциональную и статистическую.

Функциональной называется такая связь, когда с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е., значению одной переменной соответствует одно или несколько точно заданных значений другой переменной. Функциональная связь возможна лишь в том случае, когда переменная у зависит от переменной х и не от каких других факторов не зависит, но в реальной жизни такое невозможно.

Статистическая связь существует в том случае, когда с изменением значения одной из переменных вторая может в определенных пределах принимать любые значения, но ее статистические характеристики изменяются по определ закону.

Важнейший частный случай статистической связи – корреляционная связь. При корреляционной связи разным значениям одной переменной соответствуют различные средние значения другой переменной, т.е. с изменением значения признака х закономерным образом изменяется среднее значение признака у.

Коррел связь может возникнуть разными путями:

· причинная зависимость вариации результативного признака от вариации факторного признака.

· Корреляционная связь может возникнуть между 2 следствиями одной причины (пожары, кол-во пожарников, размер пожара)

· Взаимосвязь признаков каждый из которых и причина и следствие одновременно (производительность труда и з/плата)

В статистике принято различать следующие виды зависимости:

1. парная корреляция – связь между 2мя признаками результ и фактор-м, либо между двумя факторными.

2. частная корреляция – зависимость между результативным и одним факторным признаком при фиксированном значении др факторного признака.

3. множественная корреляция – зависимость результативного признака от двух и более факторных признаков включенных в исследование.

Задачей корреляционного анализа является количественная оценка тесноты связи между признаками. Регрессия исследует форму связи.

Задача регрессионного анализа – определение аналитического выражения связи.

Корреляционно-регрессионный анализ как общее понятие включает в себя изменение тесноты связи и установления аналитического выражения связи.

§8.2. Условия примен и ограничения КРА.

1. наличие массовых данных, т.к. корреляционная связь является статистической

2. необходима качест однородность совокупности.

3. подчинение распределения совокупности по результативному и факторному признаку, нормальному закону распределения, что связано с применением метода наименьших квадратов.