Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью. Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей. Содержание упрочнителя в ориентированных материалах составляет 60-80 об.%, в неориентированных (с дискретными волокнами и нитевидными кристаллами) 20-30 об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению. По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты. В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях. Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.
Говоря о применении новых материалов на основе пластиков в стройиндустрии, стоит заметить следующее. Если в гражданском строительстве в основном применяются «традиционные» материалы, то в таких секторах, как, строительства мостов, железных дорог, мостов и др., у полимерных композитов есть неплохие перспективы.
Строительство Строительство – это размытый термин, который включает в себя самые разные механические нагрузки, начиная с легких нагрузок, которым подвергаются щиты, корпуса, гнезда для защиты оборудования или звуконепроницаемых стен, и заканчивая сверхвысоким давлением, которое выдерживают опоры для мостов.
Для поиска решений, применимых в этих несхожих ситуациях, в гражданском строительстве применяются очищенные пластмассы или композиты:
- Обычно применяемые в легких строительных конструкциях.
- Периодически используемые в специализированных (нишевых) конструкциях - Предназначенные исключительно для крупных строительных конструкций, например, мостов.
На рисунке 1 изображено несколько примеров.
Рисунок 1: Строительные конструкции в гражданском строительстве.
В гражданском строительстве используются традиционные материалы, например бетон и сталь, для которых характерна низкая стоимость компонентов, но высокая стоимость обработки и установки, а также низкие возможности обработки. Результатом внедрения пластмасс может стать следующее:
- Сокращение итоговых расходов.
- Повышение производительности.
- Снижение веса.
- Увеличение возможностей при проектировании в сравнении с деревом и металлами.
- Устойчивость к коррозии.
- Простота обработки и установки.
- Определенные полимеры могут пропускать свет и даже быть прозрачными.
- Простота технического обслуживания.
- Изоляционные свойства.
С другой стороны, следует помнить о старении и механическом сопротивлении. Тем не менее, некоторые проекты, построенные в середине 1950х годов с использованием полиэстера, укрепленного стекловолокном, демонстрируют значительную долговечность.
Отрасль гражданского строительства относится к консервативным, и перед расширением использования пластмасс и композитов стоят такие барьеры, как:
- Слабая изученность и малый опыт работы с этими материалами в отрасли гражданского строительства.
- Сложность перенесения опыта, накопленного в других отраслях промышленности.
- Сложность выбора и оценки размеров этих материалов.
- Сложность взаимопонимания между представителями различных профессий, обладающими очень разными менталитетами.
- Мнение о пластмассах, сложившееся в обществе.
- Жесткие окружающие условия на месте строительства.
- Сложные условия применения, которые не совсем совпадают с практикой и квалификацией строителей.
Прогрессивный ответ пластмасс возрастающим требованиям строительства: от очищенных термопластов к ориентированным композитам с углеродными волокнами Композиты представляют особый интерес для строительной отрасли, так как им присущи высокие коэффициенты [производительность/вес/конечная стоимость].
Более того, возможность задания направления в композитном укреплении расширяет возможности при проектировании в сравнении со сталью.
В таблице 1 сравнивают несколько случаев, но также существуют и другие промежуточные решения.
Таблица 1: Примеры свойств от очищенных термопластов к однонаправленным композитам
Очищенные пластмассы и пластмассы, укрепленные коротким стекловолокном | |||
Характеристика | Полиуретан, полученный усиленным реакционным инжекционным формованием | Полиметилметакрилат для звуконепроницаемых стен | |
Стекловолокно,% | 15 | 0 | |
Плотность, г/см3 | 1.14 | 1. 19 | |
Прочность на разрыв, МПа | 20 – 27 | 70 – 80 | |
Растяжение при разрыве,% | 75 – 200 | 5 | |
Модуль изгиба, ГПа | 0.7 – 1.2 | 3.3 | |
Воздействие надреза по Изоду, Дж/м | 160 – 430 | ||
Воздействие надреза по Изоду, кДж/м2 | - | 1.6 | |
Термореактивная пластмасса, усиленная стекловолокном, для BMC (стеклонаполненный премикс для прессования) и SMC (листовой формовочный материал) | |||
Характеристика | BMC | SMC | |
Вес стекловолокна | 10 – 20 | 25 – 30 | |
Плотность, г/см3 | 1.7. – 2 | 1.7. – 1.9 | |
Прочность на разрыв, МПа | 30 – 40 | 48 – 110 | |
Растяжение при разрыве,% | - | 1.6. – 2 | |
Модуль изгиба, ГПа | 5 – 11 | 6 – 16 | |
Воздействие надреза по Изоду, Дж/м | 260 – 400 | ||
Эпоксидная смола, усиленная однонаправленным углеродным волокном | |||
Вес углеродного волокна,% | 65 | ||
Плотность, г/см3 | 1.5. – 1.7 | ||
Прочность на разрыв, МПа | 1,500 - 3,000 | ||
Растяжение при разрыве,% | 0.5 – 1.7 | ||
Модуль изгиба, ГПа | 100 – 400 |
На рисунке 2 приведена схема роста механической эффективности в соответствии с армированием полимера.