Смекни!
smekni.com

Конструкция склада минеральных удобрений (стр. 2 из 2)

w2подв = w0 ∙ гf ∙ Cеподв ∙ kср2 = 0,3∙1,4∙0,4∙0,8=0,134 кН/м2

w3подв = w0 ∙ гf ∙ Cеподв ∙ kср3 = 0,3∙1,4∙0,4∙1,05=0,176 кН/м2

Погонная расчетная ветровая нагрузка

w1нав = w1нав ∙ b = 0,105 ∙ 3=0,315 кН/м

w2нав = w2нав ∙ b = 0,168 ∙ 3=0,504 кН/м

w3нав = w3нав ∙ b = 0,22 ∙ 3=0,66 кН/м

w1подв = w1подв ∙ b = 0,84 ∙ 3=0,252 кН/м

w2подв = w2подв ∙ b = 0,134 ∙ 3=0,402 кН/м

w3подв = w3подв ∙ b = 0,176 ∙ 3=0,528 кН/м

3.2 Конструктивный расчет арки

Расчетное сочетание нагрузок

1-е сочетание: постоянная нагрузка + снеговая + Р↓

414,619 + 788,534 + 37,504 = 1240,66 кН/м

2-е сочетание: постоянная + снеговая + ветровая + Р↓

414,619 + (788,534 + 37,504 + 71,149) ∙ 0,9 = 1222,09 кН/м

Расчетные усилия: М= 1240,657 кНм

N= 328,866 кНм

Определяем предварительные размеры поперечного сечения арки:

Принимаем: h= 171,5см (49 слоев из досок у = 219мм, до острожки 225мм, фрезер пластей с 2-х сторон 5мм)

b= 33,85см (2 слоя из досок у = 219мм, до острожки 225мм, фрезер пластей с 2-х сторон 6 мм, из досок у = 119,5мм, до острожки 125мм, фрезер пластей с 2-х сторон 5,5мм)

Сечение 171,5 х 33,85 см

171,5 х 32,85 см (фрезер с 2-х сторон 10мм)

Расчет арки на прочность

Данный расчет выполняем в соответствии с указаниями СНиП II-25-80* п.4.17

Мд

– изгибающий момент от действия поперечных и продольных нагрузок, определяемый из расчета по деформационной схеме.

Определение гибкости

л =

l0 = 0,5 ∙ 64,9 = 32,45 м

S = 64,9м = длинна арки

r = радиус инерции сечения элемента с максимальными размерами брутто

r =

л =

= 65,56 при л = 65,56 < 70→

ц = 1- a

Коэффициент a = 0,8 для древесины

Ru = 15∙1∙1∙1,01∙0,8 = 12,12 МПа

Nk = 250,198 кН

о = 1-

Мд =

1312,86 кНм

0,874 < Rc = 1,212

При данном значении прочность конструкции обеспечена

3.3 Расчет на устойчивость плоской формы деформирования

Для сжато - изгибаемых элементов при отрицательном изгибающем моменте:

где:

Fбр - площадь брутто с максимальными размерами сечения на участке lр

Wбр – Максимальный момент сопротивления брутто на участке l1

n2 – для элементов без закрепления растянутой зоны из плоскости деформирования и n=1 для элементов, имеющих такие закрепления

ц – Коэффициент продольного изгиба, определяется по формуле (8)

для гибкости участка элемента расчетной длинной lp из плоскости деформирования

цм – коэффициент определяемый по формуле (23)

цм = 140

где:

lр – расстояние между опорными сечениями элемента, а при закреплении сжатой кромки в промежуточных точках от смещения из плоскости изгиба расстояние между этими точками.

b – ширина поперечного сечения.

h – максимальная высота поперечного сечения на участке lp

kф – коэффициент зависящий от формы эпюры изгибающих моментов на участке lp

kф = 1,13

Принимаем lp = 2м

цм = 140 ∙

r = 0,289∙b = 0,289∙32,85 = 9,49 см

л =

=
= 21,08 < лпред = 120

ц =

= 6,75

о = коэффициент изменяющейся от 1 до 0, учитывающий дополнительный момент от продольной силы, вследствие прогиба элемента, определяемый по формуле:

о = 1-

=1-
= 0,993

Мд =

=
= 1249,403 кНм

0,443 ≤1

Данное условие выполнено


3.4 Расчет узлов арки

3.4.1 Опорный узел

Расчетные усилия N = -393,06 кН

Q= 150,44 кН

Пролет арки 54м > 18м → конструктивно узел решается в виде плиточного шарнира.

Принимаем hш = 10 см

Из условия размещения болтов назначаем размеры:

S1 =6 ∙ d = 6 ∙ 30 = 180 мм

S2 =3 ∙ d = 3 ∙ 30 = 90 мм

S3 =2,5 ∙ d = 2,5 ∙ 30 = 75 мм (80мм)

d = 30мм – диаметр болта

Толщину башмака принимаем конструктивно 20мм. Проверяем условие, чтобы равнодействующая усилий в наиболее нагруженном болте от действия расчетной поперечной силы Q и момента в башмаке Мб не превышала его минимальной несущей способности.

Rб =

Rб – равнодействующие усилие в максимально нагруженном болте

[Т6] - минимальная несущая способность одного среза болта

Мб - расчетный момент в башмаке M6=Q∙ e

е - расстояние от оси шарнира до центра болтового соединения

nб - число болтов в крайнем ряду, ║ оси элемента

mб - общее число болтов в башмаке

Zi - расстояние между осями болтов в направлении ┴ оси элемента

Zmax - максимальное расстояние между осями болтов в том же направлении

У Zi - сумма квадратов расстояний между рядами болтов

e = 180 ∙ 0,5 +180 + 20 + 50 = 340 мм

Мб = 150,44 ∙ 0,34 = 51,15кНм = 5115 кН см

У Zi = 92 +272+452 = 2835 см2

Rб =

= 42,49 кН <
∙ nш = 45 кН

= 2,5∙ d2 = 2,5 ∙ 32 = 22,5 кН

Проверка опорного узла на смятие под углом к волокнам

усм =

< Rсмб ∙ kN

Rсмб - расчетное сопротивление смятию древесины под углом к волокнам

kN - коэффициент, учитывающий концентрацию напряжений под кромками башмаков

Fсм = 54 ∙ 61 = 3294 см2

Rсмб =

7,19 МПа

0,12 кН/см2 < 0,719 ∙ 0,35 = 0,25 кН/см2

Проверка на скалывание по клеевому шву в опорном узле


ф =

Sx =

=
25116,75 см3

Ix =

=
1021414,5 см4

ф =

0,069 кН/см2 < Rск = 0,14 кН/см2

Прочность на скалывании обеспечена.

3.4.2 Коньковый узел

Расчетные усилия: N= -250,198 кН

Q= 166,799 кН

Н = N cos б + Q ∙ sin б = -250.198 0,832 + 166.799 ∙ 0,555 = - 115,59 кН

Н - горизонтальная составляющая усилий

R = Q cos б - N ∙ sin б = 166,799 ∙ 0,832 + 250,198 ∙ 0,555 = 277,63 кН

R - вертикальная составляющая усилий

Коньковый узел конструктивно решается как опорный. Диаметр болтов назначаю такой же, т.е. d =30 мм. Толщина пластины башмака 20 мм.

е = 340мм

Mб = R ∙ е = 277,63 ∙ 0,34 = 94,39 кН м = 9439 кН см

У Zi2 = 92 + 272 + 452 = 2835 см2

Rб =

37,96 кН < [Тб] ∙ nш = 38,82 кН

[Тб] = 2,5 ∙ d 2 ∙

= 2,5 ∙ 32 ∙
= 19,48 кН

Kб – коэффициент используемый при передаче усилий от панелей под углом к волокнам.

Проверка конькового узла на смятие под углом к волокнам

усм =

Rсмб – расчетное сопротивление смятию древесины под углом к волокнам

kN – коэффициент учитывающий концентрацию напряжений под кромками башмаков.

Fсм = 54 ∙ 81= 4374 см2

Rсмб =

7,19 МПа

0,026 кН/см2 < 0,719 ∙ 0,35 = 0,25 кН/см2

Проверка конькового узла на скалывание по клеевому шву:

ф =

0,044 кН /см2 < Rскб = 0,14 кН/см2

Rскб = 0,14 кН/см2 – расчетное сопротивление древесины скалыванию под углом к волокнам:


Rскб =

1,4 МПа = 0,14 кН/см2

4. Обеспечение пространственной устойчивости сооружения

В сооружении плоскостные несущие конструкции при помощи связей в продольном направлении объединяются в общую систему, которая доводиться до неподвижных частей, эта система обеспечивает пространственную неизменяемость, устойчивость, прочность и жесткость конструкции от воздействий внешних сил любого направления при расчетном сочетании нагрузок.

По конструктивному признаку связь - скатная с крестовой решеткой.

Блоки связей спаренные, так как пролет более 18 метров (54м), расположены в торцовых секциях и через 24 метра. Всего 4 блока связей с каждой стороны, что обеспечивает пространственную неизменяемость, устойчивость, прочность и жесткость конструкции.