Смекни!
smekni.com

Одноэтажное каркасное промышленное здание (стр. 2 из 11)

Постоянная нагрузка от веса стеновой панели составит:

2.2 определение нагрузки от крановых воздействий

Производственные здания часто оборудуются большим числом мостовых кранов в каждом пролете. Одновременное неблагоприятное воздействие их на раму, маловероятно, поэтому при расчете нагрузка учитывается только от двух сближенных кранов. Вертикальная крановая нагрузка передается на подкрановые балки в виде сосредоточенных сил Pmax и Pmin при их невыгодном положении на подкрановой балке. Расчетное давление на колонну, к которой приближена тележка, определяется по формуле:

Dmax =

;

на противоположную колонну:

Dmin =

;

где

= 0,85 - коэффициент сочетаний при совместной работе двух кранов для групп режимов работы кранов 1К-6К;
= 1,5 - коэффициент надежности по нагрузке для крановых нагрузок; Pmax - наибольшее вертикальное давление колес на подкрановую балку; Согласно ГОСТ 25.711-83 принимаем следующие характеристики для крана:

Q = 5 т;

Lk = 24500 мм

А = 5000 мм

В = 6500 мм;

Pmax = 101 кН;

Gt = 22 кН

G = 250 кН;

Наименьшее давление колеса крана вычисляется по формуле:

гдеQ - грузоподъемность крана в т; G - полный вес крана с тележкой; no - число колес на одной стороне крана. Определим минимальное давление колеса:

Давление на колонну:

Dmax = 0,85∙∙101∙ (1 + 0,458 + 0,958 + 0,583) ∙1,5 = 386,2 кН;

Dmin = 0,85∙49∙ (1 + 0,458 + 0,958 + 0,583) ∙1,5 = 187,36 кН.

Горизонтальные силы поперечного торможения, возникающие при торможении крановой тележки, передаются на колонны через тормозные балки или фермы.

Нормативную поперечную горизонтальную силу от торможения тележки Тоn, действующую поперек цеха, определяют по формуле:

Тоn = f∙ (Q + Gt) ∙

;

гдеf = 0,1 - коэффициент трения при торможении тележки с жестким подвесом груза;

Gt - вес тележки;

- число тормозных колес тележки;

- общее количество колес.

Нормативная поперечная горизонтальная сила торможения тележки составит:

Тоn = 0,1∙ (50 + 22) ∙

= 3,6 кН;

Нормативная поперечная сила, действующая на одно колесо:

Ткn =

;

Расчетное горизонтальное давление на колонну от двух сближенных кранов равно:

Т =

= 0,85∙1,8∙ (1 + 0,458 + 0,958 + 0,583) = 4,59 кН.

2.3 определение нагрузок от давления снега и ветра

Расчетная снеговая нагрузка на крайнюю колонну определяется по формуле:

Qds= sо∙μ∙L/2∙B∙γf,

гдеso - нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемое в зависимости от района строительства. Согласно СНиП 2.01.07-85 карта 1 город Минск расположен в II- ом снеговом районе. Нормативное значение снеговой нагрузки для него so= 0,7 кПа; μ - коэффициент перехода от скатной кровли к горизонтальной поверхности. Для расчета рамы принимается μ = 1, так как α < 25°; γf - коэффициент надежности по нагрузке, для снега принимаемый в зависимости от отношения нормативной нагрузки от веса покрытия к нормативному значению веса снегового покрытия. Расчетная погонная снеговая нагрузка на ригель рамы составит:

Qds= 0,7∙1∙25/2∙12∙1,5 = 157,5 кН.

При расчете одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типов А и В, учитывается только статическая составляющая ветровой нагрузки, соответствующая установившемуся напору на здание. Характер распределения статической составляющей ветровой нагрузки в зависимости от высоты над поверхностью земли определяют по формуле:

wm = wo×k×c×γf,

wo - нормативное значение ветрового давления, принимаемое в зависимости от района строительства. Согласно СНиП 2.01.07-85 карта 3 город Минск расположен в II- ом ветровом районе, wo= 0,23 кПа;

k - коэффициент, учитывающий изменение ветрового давления в зависимости от высоты здания;

с - аэродинамический коэффициент; c = 0,8 - для наветренной стороны, c/= 0,6 - для подветренной стороны

Определим ординаты фактических эпюр расчётной погонной нагрузки на раму на высоте 5, 10,20 м для напора и отсоса при направлении действия ветровой нагрузки слева.

Отобразим эпюры ветровых давлений на раму при действии ветра слева, определив промежуточные значения интерполяцией:

Для упрощения расчёта фактическую ветровую нагрузку заменяем эквивалентной, равномерно распределенной по высоте колонны. Величину эквивалентной нагрузки находим из условия равенства изгибающих моментов в защемлённой стойке от фактической эпюры ветрового давления и от равномерно распределённой нагрузки. Ветровую нагрузку на шатёр (от низа до верха стропильной балки), заменяем сосредоточенной силой W, приложенной в уровне ригеля рамы.

Найдем эквивалентную равномернораспределенную нагрузку на раму с наветренной стороны:

MA = 4.32∙5∙ (2.5+0.15) +0.5∙ (4.32+5.616) ∙5∙ (10+0.15) +0.5∙ (5.616+6.518) ∙7.55∙ (13.875+0.15) = 951.79 кН.

Ветровая нагрузка на шатер:

;

3. Определение расчетных усилий в элементах ПРЦ

3.1 статический расчет рамы

Статический расчет выполняется на основании собранных выше нагрузок и по определенным ранее размерам поперечной рамы цеха. Статический расчет необходим для дальнейшего расчета колонн и фундаментов.

Результаты расчета приведены в приложении 1.

Сводная таблица усилий в колонне по данным расчета на ЭВМ

№п. п. Виднагр. Коэф.сочет-анийΨ Расчетные усилия
Сечение I-I Сечение II-II Сечение III-III Сечение IV-IV Сечение IV-IV
M N V M N V M N V M N V ∑Ni ∑Vi M N V
1 Постоянная 1 87,6 -707,5 -7,2 111.3 -733.3 -7.2 -81.8 -972.3 -7.2 23.1 -1072.5 -7.2 -2145 0 16.5 -766.07 -5.14
2 Снеговая 1 28,4 -157,5 -0,9 31.2 -157.5 -0.9 -12.9 -157.5 -0.9 -0.4 -157.5 -0.9 -315 0 -0.286 -112.5 -0.643
2 * 0,7 19,8 -110,25 -0,63 21.84 -110.25 -0.63 -9.03 -110.25 -0.63 -0.28 -110.25 -0.63 -220.5 0 -0.2 -78.75 -0.45
3 Ветер слева 1 - - -10,4 66.7 - -30.0 66.7 - -30.0 1137.7 - -116.6 - -216.5 812.64 - -83.28
3 * 0,6 - - - - - - - - - - - - - - - - -
4 Ветер справа 1 - - 20,1 -90.6 - 34.8 -90.6 - 34.8 -1074.2 - 99.9 - 216.5 748 - 71.36
4 * 0,6 - - - - - - - - - - - - - - - - -
5 DMAX в 1-ом пролете слева 1 - - 9,6 -31.6 - 9.6 132.5 -386.2 9.6 -7.3 -386.2 9.6 -573.6 0 -5.21 -275.86 6.86
5 * 0,8 - - 7,68 -25.3 - 7.68 106 -294.56 7.68 -5.84 -294.56 7.68 -458.88 0 -4.17 -220.69 5.49
6 DMAX в 1-ом пролете справа 1 - - 9,6 -31.6 - 9.6 48 -187.4 9.6 -91.8 -187.4 9.6 -573.6 0 -65.57 -133.86 6.86
6 * 0,8 - - 7,68 -25.3 - 7.68 38.4 -149.92 7.68 -73.44 -149.92 7.68 -458.88 0 -52.46 -107.09 5.49
7 Тормозное усилие к левой крайней колонне 1 - - -1,9 -0.2 - 2.7 -0.2 - 2.7 -39.6 - 2.7 - 4.6 -28.28 - 1.93
7 * 0,8 - - -1,52 -0.16 - 2.16 -0.16 - 2.16 -31.68 - 2.16 - 3.68 -22.62 - 1.54
8 Тормозное усилие к правой крайней колонне 1 - - 1,9 -6.2 - 1.9 -6.2 - 1.9 -33.8 - 1.9 - 4.6 -24.14 - 1.36
8 * 0,8 - - 1,52 -4.96 - 1.52 -4.96 - 1.52 -27.04 - 1.52 - 3.68 -19.31 - 1.09

Определение смещаемости каркаса.