Смекни!
smekni.com

Проектирование и расчеты одноэтажного промышленного здания (стр. 2 из 11)

;

- подкрановая часть

.

Временные нагрузки.

Снеговая нагрузка. Район строительства – г. Липецк, относящийся к III району по весу снегового покрова, для которого

(см. прил. 16). Расчетная снеговая нагрузка при
:

- на крайние колонны;

кН;

- на средние колонны

кН.

Крановая нагрузка. Вес поднимаемого груза

. Пролет крана

21-2•0,75=19,5 м. Согласно прил. 15 база крана М=5600 мм, расстояние между колесами К=4400 мм, вес тележки Gn=60 кН, Fn,max=155 кН, Fn,min=64 кН. Расчетное максимальное давление колеса крана при

:

кН;
кН.

Расчетная поперечная тормозная сила на одно колесо:

.

Вертикальная крановая нагрузка на колонны от двух сближенных кранов с коэффициентом сочетаний

:

кН;

кН.

где:

сумма ординат линий влияния давления двух подкрановых балок на колонну (рис. 4,б).

Вертикальная нагрузка от четырех кранов на среднюю колонну с коэффициентом сочетаний

равна:

кН;

на крайние колонны:

кН;

Горизонтальная крановая нагрузка от 2-х кранов при поперечном торможении:

.

Горизонтальная сила поперечного торможения приложена к колонне на уровне верха подкрановой балки на отметке 9,05 м. Относительное расстояние по вертикали от верха колонны до точки приложения тормозной силы : Н=12,00-8,05=3,95 :

- для крайних колонн

;

- для средних колонн

.

Ветровая нагрузка. г. Липецк расположен в III районе по ветровому давлению, для которого

Н/м2 (прил. 17). Для местности типа В коэффициент
, учитывающий изменение ветрового давления по высоте здания равен (прил. 18):

на высоте 5 м---0,5;

то же 10 м ------0,65;

то же 20 м ------0,85;

то же 40 м -----1,1;

На высоте 12,0 м в соответствии с линейной интерполяцией (рис. 5):

На уровне парапета (отм. 13,2м.):

.

На уровне верха покрытия (отм. 14,90м.):

Переменное по высоте ветровое давление заменим равномерно распределенным, эквивалентным по моменту в заделке консольной стойки длиной 12,0 м:

.

При условии

и
значение аэродинамического коэффициента для наружных стен согласно приложения 4 [1] принято:

- с наветренной стороны

, с подветренной
(здесь
и L соответственно длина и ширина здания). Расчетная равномерно распределенная ветровая нагрузка на колонны до отметки Н=12,0 м при коэффициенте надежности по нагрузке
:

- с наветренной стороны

;

- с подветренной стороны

.

Расчетная сосредоточенная ветровая нагрузка между отметками 12,0м и 14,9м:

Рис. 5. Распределение ветровой нагрузки по высоте здания.


2. СТАТИЧЕСКИЙ РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ

Расчет рамы может выполняться одним из методов строительной механики, причем для сложных рам общего вида – с помощью ЭВМ.

Между тем, в большинстве одноэтажных промышленных зданий ригели располагаются на одном уровне, а их изгибная жесткость в своей плоскости значительно превосходит жесткость колонн и поэтому может быть принята равной EJ=Ґ. В этом случае наиболее просто расчет рам производится методом перемещений. Основную систему получим введением связи, препятствующей горизонтальному смещению верха колонн (рис.7.а.).

Определение усилий в стойках рамы производим в следующем порядке:

– по заданным в п.1.2. размерам сечений колонн определяем их жесткость как для бетонных сечений в предположении упругой работы материала;

– верхним концам колонн даем смещения

и по формуле приложения 20 находим реакцию
каждой колонны и рамы в целом

где n – число колонн поперечной рамы;

– по формулам приложения 20 определяем реакции

верхних опор стоек рамы в основной системе метода перемещений и суммарную реакцию в уровне верха колонн для каждого вида нагружения;

–для каждого из нагружений (постоянная, снеговая, ветровая, комплекс крановых нагрузок) составляем каноническое уравнение метода перемещений, выражающее равенство нулю усилий во введенной (фиктивной) связи

, (2.1)

и находим значение

; здесь
– коэффициент, учитывающий пространственную работу каркаса здания.

При действии на температурный блок постоянной, снеговой и ветровой нагрузок все рамы одинаково вовлекаются в работу, пространственный характер деформирования не проявляется и поэтому принимают

. Крановая же нагрузка приложена лишь к нескольким рамам блока, но благодаря жесткому диску покрытия в работу включаются все остальные рамы. Именно в этом и проявляется пространственная работа блока рам. Величина
для случая действия на раму крановой (локально приложенной) нагрузки может быть найдена по приближенной формуле:

, (2.2)

где:

– общее число поперечников в температурном блоке;

– расстояние от оси симметрии блока до каждого из поперечников, a– то же для второй от торца блока поперечной рамы (наиболее нагруженной);

– коэффициент, учитывающий податливость соединений плит покрытия; для сборных покрытий может быть принят равным 0,7;

=1, если в пролете имеется только 1 кран, в противном случае
=0,7;

– для каждой стойки при данном нагружении вычисляем упругую реакцию в уровне верха:

(2.3)

– определяем изгибающие моменты M, продольную N и поперечную Q силы в каждой колонне как в консольной стойке от действия упругой реакции

и внешних нагрузок.