Смекни!
smekni.com

Проектирование металлических конструкций (стр. 4 из 4)

Ослабление пояса можно не учитывать.

Проверяем ослабление накладок в середине стыка четырьмя отверстиями:

.

Рисунок 8 – Схема размещения болтов на вертикальной накладке поясов балки

5.7 Опорное ребро составной балки

Определяем площадь смятия торца ребра по формуле:

, (52)

где: Rр=370/1,025=361 МПа – расчетное сопротивления смятию торцевой поверхности.

.

Принимаем ребро 180х10 мм.

.

Проверяем опорную стойку балки на устойчивость относительно оси z. Ширина участка стенки, включенной в работу опорной стойки, определяется по формуле:


, (53)

.

Aw=Aр+twbw=18+1·19,05=37 см2.

Момент инерции относительно оси z:

.

Радиус инерции сечения ребра:

.

Гибкость ребра :

.

Определяем φ = 0,967 (СНиП II-23-81*,табл.72).

Проверка опорного ребра:

13,3<24 кН/см2.

Рассчитываем прикрепление опорного ребра к стенке балки двухсторонними швами полуавтоматической сваркой проволокой Св-08Г2. Предварительно находим параметры сварных швов и определяем минимальное значение Rwz×bz=184,5 МПа.

Определяем катет сварных швов по формуле:

, (54)

.

Принимаем требуемый катет шва kf=6 мм (в соответствии с табл.38 СНиП II-23-81*).

Проверяем длину рабочей части шва:

,

51<96,8 см.

Ребро привариваем к стенке по всей высоте сплошными швами.

6. Расчет колонн

Принимаем сталь С255, g=95,46 кН/м, Ry=24 кН/см2.

Расчетная нагрузка: N= g×l×1,05=95,46×10×1,05=1002 кН,

где g – нагрузка на главную балку,

l – длина главной балки,

1,05 – собственный вес колонны.

Расчетная длина стержня:

l0=ОП– tн–hБН–hГБ+ОФ=8,2–0,01–0,22–1+0,6=7,57 м.

Задаемся гибкостью λ=60 и находим соответствующее значение φ=0,805. Подбираем сечение стержня, рассчитывая его относительно материальной оси Х.

Определяем требуемые площадь сечения и радиус инерции по формулам:

, (55)

, (56)

.

По сортаменту ГОСТ 8239–72 принимаем два двутавра №33 со значениями А и i, близкие к требуемым А=53,8 см2, i=13,5 см.

Рассчитаем гибкость относительно оси Х:

λх=757/13,5=56,1. Определим φх=0,823.

Проверяем устойчивость относительно оси Х:

σ=

=
кН/см2<24,0.

Недонапряжение составляет 5,7%, что допустимо.

6.1Конструирование и расчет базы колонны

Материал базы – сталь марки С255, расчетное сопротивление 24 кН/см2. Бетон фундамента класса В15 с расчетным сопротивлением, Rbt=0,6 кН/см2.

Вычисляем расчетную нагрузку на базу колонны по формуле:

, (57)

Вычисляем требуемую площадь плиты базы по формуле:

, (58)

Назначаем толщину траверсы tp=10 мм. Вылет консольной части плиты l=100 мм, тогда ширина плиты b=bк+2×(tmp+l)=140+2(10+100)=360 мм.

Требуемая длина плиты: lmp=

cм. Принимаем lб=40 cм.

Размеры верхнего обреза фундамента принимаем на 10 см больше размеров плиты, т.е. Аф=aф×bф=46×50 см, корректируем коэффициент γ:

.

Рассчитываем напряжение под плитой базы:

, (59)

кН/см2<0,6×1,26=0,76 кН/см2.

Конструируем базу колонны с траверсами толщиной 10мм, привариваем их к полкам колонны и к плите угловыми швами. Вычисляем изгибающие моменты на разных участках для определения толщины плиты.

Рисунок 9–База колонны

Участок 1 опертый на 4 канта.

Отношение сторон b/a=310/66=4,69 – α=0,125:

М1= α×σ×a2=0,125×0,69×6,62=3,8 кН/см.

Участок 2 опертый на 3 канта:

Отношение сторон b1/a1=85/140=0,62 – β =0,077:

М2= α × β ×a12=0,077×0,69×142=10,41 кН/см.

Участок 3, консольный – α =0,5:

М3= α × σ ×с2 =0,5×0,69×102=34,5 (кН/см).

Определяем толщину плиты по максимальному моменту по формуле:

, (60)

Принимаем толщину плиты tпл=30 мм.

Таким образом, с запасом прочности усилие в колонне полностью передается на траверсы, не учитывая прикрепления торца колонны в плите.

Прикрепление траверсы к колонне выполняется ручной полуавтоматической сваркой в углекислом газе сварочной проволокой Св08Г2. Толщину траверс принимаем tmp=10 мм, высоту h=400 мм. Расчетные характеристики:kf=8 мм, Rs=0,58Ry=0,58×24=13,92 кН/см2.

Определяем напряжение шва фундамента следующим образом:

, (61)

lf= lб–2=40–2=38 см.<85×βf×kf=85×0,8×0,7=47,6 см, требование к макси-мальной длине швов выполнено.

.

Проверяем прочность шва:

(62)

.

По металлу шва bf =0,7 (табл.34 СНиП II-23-81*, для ручной полуавтоматической сварки); расчетное сопротивление металла шва Rwf = 180 МПа (по т.56 СНиП II-23-81*); Rwf×bf=180×0,7=126 МПа.

по металлу границы сплавления bz = 1 (табл.34 СНиП II-23-81*, для ручной полуавтоматической сварки); расчетное сопротивление металла шва Rwz = 0,45Run=0,45·410=184,5 МПа (по т.56 СНиП II-23-81*); Rwz×bz=184,5×1=184,5 МПа.

Более опасное сечение по металлу шва.

.

прочность шва обеспечена.


Список используемой литературы

1. СНиП 2-23-81*. Стальные конструкции/ Госстрой СССР.- М.: ЦИТП Госстроя СССР, 1990.-96с.

2. Примеры расчета металлических конструкций: Учеб. Пособие для техникумов.-2-еизд., перераб. и доп.- М.: Стройиздат, 1991.-431с.: ил.

3. Металлические конструкции. Общий курс.: Учебник для вузов/ Е.И.Беленя, В.А. Балдин и др. ; Под общей ред. Е. И. Беленя. – 6-е изд., перераб. и доп. – М.: Стройиздат , 1986. – 560с., ил.

4. Учебное пособие. Конструирование и расчёт балочной площадки промышленного здания. – Шагивалеев К. Ф., Айгумов М.М. – Саратов: СГТУ, 2004. – 51с.