Рассчитаем расчетные сопротивления углового шва:
Где: Rwun=450 МПа = 46 кН/см2 (по таб.4 СНиП II-23.81)
γwm=1,25 (по таб.3 СНиП II-23.81)
Run=360 МПа = 37 кН/см2 (по таб.51 СНиП II-23.81)
βf=0,95
βw=1,05
Коэф. условий работы шва:
γwf= γwz=1
Таким образом прочность по границе сплавления шва обеспечена.
Проверим условие (**):
Так как условие (**) выполняется проверку прочности по металлу шва можно не проводить.
Ребро приваривается к стенке по всей высоте сплошными швами.
Устройство опорного ребра главной балки см. рис.11
Рис. 11
3.10 Расчет монтажного стыка сварной балки на высокопрочных болтах
Стык делаем в середине пролета балки, где Мmax=3026,16 кНм и Q=0 кН
Стык осуществляем высокопрочными болтами d=20мм из стали 40Х «Селект», имеющих по таблице
, обработка пескоструйная.Определим несущую способность болта, имеющую две плоскости трения :
кНгде:
, т.к. разница в номинальных диаметрах отверстия и болта больше 1мм ик=2 - две плоскости трения
1) Стык поясов. Каждый пояс балки перекрываем тремя накладками сечениями 380х12 и 2х160х12 мм.
Общей площадью сечения:
Определяем усилие в поясе :
кНм кНОпределим количество болтов для крепления площадок:
Принимаем 16 болтов
2) Стык стенки. Стенку перекрываем двумя накладками сечением 320х1150x8 мм
Определим момент действующий на стенку:
кНмПринимаем расстояние между крайними по высоте рядами болтов:
ммНаходим коэффициент стыка a:
Из таблицы 7.8 (Бел.) находим количество рядов болтов по вертикали k при a=2,12, k=11 и a=2,20>a=2,12
Принимаем 11 рядов с шагом 104 мм.
Проверяем стык стенки:
кНСтык стенки удовлетворяет условиям прочности.
Устройство монтажного стыка главной балки см. рис. 12
Рис. 12
4. Расчет центрально сжатой колонны
4.1 Расчет стержня
-сталь марки С245
-расчетное сопротивление стали Ry=240 МПа = 24,5 кН/см2
-предел текучести стали Ru=360 Мпа = 37 кН/см2
Колонны рабочей площадки рассчитываются
как центрально сжатые стержни с шарнирным
закреплением нижнего и верхнего концов.
Расчетная длина стержня равна:
мμ – коэффициент равный 1,0 при шарнирном
закреплении с двух сторон.
Расчетная нагрузка:
кН1,01 – коэффициент учитывающий собственную
массу колонны
Рис. 13
а) Определение требуемой площади сечения колонны:
Зададимся значением гибкости λ0=60, тогда коэффициент продольного изгиба φ0=0,805 по прил. 7 (Бел.).
Подбираем сечение стержня, рассчитывая его относительно материальной оси x, определяя требуемые: площадь сечения:
см2Радиус инерции:
По сортаменту (прил. 14 Бел.) принимаем два швеллера № 36.
Рассчитаем гибкость принятого сечения относительно оси x:
тогда φ=0,896
проверим устойчивость относительно оси x:
кН/см2Недонапряжение
%,Принимаем 2 швеллера №36.
б) Расчет относительно свободной оси y.
Определим ширину сечения b из условия равноустойчивости колонны λпр=λb. Для этого, в соответствии с рекомендациями принимаем гибкость ветви λb=30. Тогда можно определить требуемую гибкость:
Ей соответствует радиус инерции:
смТребуемое расстояние между обушками швеллеров, с полками ориентированными внутрь, находим из соотношения:
смЭто расстояние должно быть не менее удвоенной ширины полки швеллера плюс зазор 10 см (для возможности очистки и окраски ветвей с внутренней стороны).
В нашем случае 46см ≥ 2*11*10=32 см, то есть найденная величина – приемлема.
в) Окончательная проверка подобранного сечения.
Швеллер №36 имеет:
Iy0=513 см4
А=53,4 см2
iy=3.1 см
z0=2.68 см
Определим момент инерции всего сечения:
см4Расчетная длина ветви:
смПринимаем расстояние между планками в свету lB=90 см
Радиус инерции сечения:
смГибкость:
Приведенная гибкость:
Из этого следует, что проверку напряжений можно не делать.
Расчет планок.
Соединительную решетку центрально сжатых колонн рассчитывают на поперечную силу, которая возникает от искривления стержня при продольном изгибе:
кНПолагают, что поперечная сила постоянна по всей длине стержня.
В сварных колоннах:
смТолщину планок tпл назначают конструктивно 6-14 мм, примем tпл=10 мм
Площадь сечения планки:
см2Момент сопротивления планки:
смПогонная жесткость планки:
Погонная жесткость ветви:
деформацией планок можно пренебречь
Проверим напряжение в планке:
кН/см2 кНсм кНТаким образом прочность обеспечена.
Рис.14
4.2 Расчет базы.
1. определение размеров плиты в плане.
Определим расчетное сопротивление смятию бетона фундамента:
кН/см2где: Rc – призменная прочность (для бетона М-150 Rc=0,7 кН/см2)
ξ – вначале расчета можно приближенно взять 1,2
Требуемая площадь плиты:
см2Ширина плиты принимается конструктивно:
смТребуемая длина плиты:
смгде: а – принимается от 100 до 120 мм для размещения плавающей шайбы.
Принимаем Lпл=66 см
2. определение толщины плиты.
Плита работает как пластинка, опертая на траверсы и нагруженная равномерно-распределенным реактивным давление фундамента.