Смекни!
smekni.com

Технологии погружения металлического шпунта вблизи существующих зданий с обеспечением их безопасности и недопущения неравномерных осадок их фундаментов (стр. 5 из 5)

Использование вибропогружателей для погружения шпунта вблизи существующих зданий полностью не исключает опасность неравномерных осадок. Самый надежный путь защиты зданий – уменьшение исходного уровня колебаний, генерируемых при вибрационном погружении или извлечении шпунта. Частично решить эту задачу удается с помощью так называемых «городских» вибропогружателей, вибрационные параметры которых являются результатом теоретических и экспериментальных исследований. Однако сложным вопросом остается регулирование статического момента массы дебалансов. В процессе работ величина статического момента массы дебалансов и, соответственно, амплитуда колебаний вибрирующей системы должны обеспечивать погружение, т.е. вибрирование погружаемого элемента относительно прилегающего к нему грунта в условиях эффективного проскальзывания («срыва»), иначе говоря, отсутствие «присоединенной» к элементу массы грунта. Эффективность такого решения объясняется тем, что в состоянии «срыва» шпунта относительно прилегающего грунта интенсивность затухания колебаний в нем возрастает, а отношение амплитуд колебаний погружаемого элемента и окружающего его массива грунта составляет два-три порядка.

На фундаменты, расположенные вблизи места погружения (извлечения), существенно влияют процессы пуска и «выбега» (остановки) вибропогружателя, так как при этом в грунте могут возбуждаться резонансные колебания, амплитуда которых значительно превышает амплитуду колебаний в рабочем режиме. При достаточной мощности привода скорость прохождения через резонанс во время пуска достаточна велика (по опытным данным ВНИИГС время выхода вибропогружателя В-402 на номинальное число оборотов в процессе пуска не превышает 0,5 с), и амплитуда колебаний грунта, а также расположенных вблизи зданий и сооружений не успевает достичь опасных значений. Для вибропогружателей других типов при недостаточной мощности привода существует опасность затяжного пуска, требующая принятия специальных мер виброзащиты.

Экспериментально установлено, что при выбеге вибропогружателя на поверхности грунта в течение нескольких секунд возбуждаются резонансные колебания, амплитуда которых в зависимости от грунтовых условий (типа погружаемого элемента и т.п.) может практически в два раза превысить амплитуду колебаний грунта при номинальном режиме работы вибропогружателя.

В качестве меры борьбы с этим опасным явлением в современных «городских» вибропогружателях применяется динамическое торможение приводного двигателя для ускоренного прохождения через резонанс. Это позволяет значительно снизить резонансные амплитуды во время «выбега» при одновременном сокращении времени их воздействия.

В настоящее время все большее применение находят гидравлические вибропогружатели различных производителей, приводимые в действие от автономно стоящих дизельных силовых агрегатов или от гидравлических систем экскаваторов. Вибропогружатели работают от автономного дизельного агрегата. Дизельный молот приводит в действие гидравлические насосы, которые прокачивают масло в вибропогружатель и обеспечивают работу мотора вибратора. Агрегаты оснащены противошумовыми глушителями. Управление, контроль и регулировка происходят с помощью электронной системы управления с пульта ДУ или бескабельного радиоуправления (рис. 20).

Рис. 20. Принципиальная схема компоновки комплекта оборудования для работы гидравлического вибропогружателя

1 – дистанционное управление; 2 – дизельный агрегат; 3 – гидравлические масляные шланги; 4 – эластичная подвесная опора шлангов; 5 – амортизатор; 6 – гидравлический двигатель; 7 – дебаланс; 8 – погружаемый элемент; 9 – гидравлические зажимы

Как указывается, например в [7,8], вибрационное погружение шпунта и других элементов с относительно малым лобовым сопротивлением вблизи существующих фундаментов необходимо выполнять высокочастотными вибропогружателями (с частотой не менее 30 Гц), желательно с плавным регулированием параметров колебаний. На необходимость снижения амплитуды колебаний указывалось еще в [10]. Дальнейшие экспериментальные исследования подтвердили необходимость повышения частоты вынужденных колебаний с целью снижения уровня колебаний окружающего грунта [9]. За рубежом применение высокочастотных вибропогружателей (38 Гц) в условиях плотной городской застройки является обязательным. Таким образом, для вибропогружателей, предназначенных для погружения (извлечения) шпунта и других элементов с относительно малым лобовым сопротивлением вблизи существующих зданий, частота вынужденных колебаний должна находиться в пределах 30–38 Гц, причем глубина регулирования частоты весьма мала. Поэтому фактически достаточно иметь постоянную величину частоты, находящуюся в вышеуказанном диапазоне.

Литература

1. Цейтлин М.Г., Верстов В.В., Азбель Г.Г. Вибрационная техника и технология в свайных и буровых работах. Л.: Стройиздат, 1987.

2. Раюк В.Ф., Рукавцов А.М., Осипов И.В., Алтапов С.Н. Особенности строительства заглубленного помещения в шпунтовом ограждении вблизи существующего здания // Рациональная технология производства специальных строительных работ: Сб. науч. Тр. / Всесоюз. науч.-исслед. ин-т гидромеханизации, сан.-техн. и специальных строительных работ / Под ред. канд. техн. наук В.В. Верстова. – Л., 1991. – 112 с., 47 ил.

3. Раюк В.Ф., Матвеева Н.М. Расчет ограждающих стен подземных сооружений с учетом взаимодействия с фундаментами близлежащих зданий // Технология и оборудование для специальных строительных работ: Сб. науч. тр./ВНИИГС. – Л., 1984.

4. Баркан Д.Д. Виброметод в строительстве. М.: Госстройиздат. 1959, 313 с.

5. Левкин А.А. Напряженно-деформированное состояние оснований зданий при наличии разъединительного шпунтового ряда: Автореф. дис. канд. техн. наук / СПбГАСУ. СПб., 1996.

6. Верстов В.В. Устройство ограждений стволов шахт для микротуннелирования в условиях городской застройки // Монтажные и специальные работы в строительстве. 1999. №9.

7. Маковская Н.А., Глозман Л.М. Способы устранения негативных воздействий на здания и сооружения при возведении конструкций глубокого заложения // Реконструкция городов и геотехническое строительство. 1999. №1. С. 90–96.

8. Улицкий В.М., Шашкин А.Г. Геотехническое сопровождение реконструкции городов. Изд-во АСВ, М.: 1999.

9. Цейтлин М.Г., Азбель Г.Г., Изофов В.О. Результаты исследований и перспективы вибрационного метода при устройстве фундаментов вблизи существующих сооружений // Экспресс-информация ЦБНТИ ММСС СССР. Серия «Специальные строительные работы». №6, М., 1983.

10. Савинов О.А., Лускин А.Я. Вибрационный метод погружения свай и его применение в строительстве. М.: – Л.: Госстройиздат, 1960.

11. Татарников Б.П. Присоединение для соединения вибровозбудителя со сваей: А. с 135830 СССр от 18.07.1960 // Б.И. 1961, №3.

12. Цаплин С.А. Вибрационный копер для забивки свай: А. с. 105358 СССр от 5.11.1949 // Б.И. 1957, №2.

13. Верстов В.В., Певзнер М.З., Цейтлин М.Г. Вибромолот: А. с. 468978 СССР, МКИ Е02d 7/18 от 30.06.1972 // Б.И. 1975, №16.

14. Александров В.П., Фильков В.А. Технология и организация строительных и гидротехнических работ. Транспорт, М: 1980.

15. Верстов В.В., Белов Г.А. Совершенствование технологических решений по погружению и извлечению шпунта вибрационным методом // Вестник гражданских инженеров. 2007. №4. С. 38–44.