Неподвижные опоры должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов (охлаждение, нагрев) в том числе при открытых и закрытых задвижках.
Схема прилегающих участков к рассчитываемой неподвижной опоре Н6 изображена на рисунке 1. .
Рис. 1. – Схема для определения горизонтальных усилий на неподвижную опору
Формулы для определения осевого усилия на неподвижную опору (В) [6]:
при нагреве
при охлаждении
где p – давление теплоносителя, Па;
D – диаметр трубопровода, м
Рк – сила упругого отпора П-образного компенсатора, Н;
Рх – сила упругого отпора Г-образного компенсатора, Н;
q – весовая нагрузка на 1 м длины трубопровода, Н/м (515 Н/м);
m - коэффициент трения скользящих опор (m=0.3).
Расстояния l1, l2, l3 по схеме соответственно равны 26,8; 20 и 7 м.
при нагреве
при охлаждении
За расчетное усилие принято большее значение Р=7464 Н.
Для двух трубопроводов соответственно 14,9 кН.
1.8.6 Определение диаметров спускников
Определение диаметров спускных устройств производится с целью обеспечения слива воды из трубопровода теплосети за определенный период времени. Диаметр штуцера и запорной арматуры d, м, для спуска воды из секционируемого участка трубопровода определяют по формуле [1]:
(1.34)где d red, ål, i red - соответственно приведенный диаметр, м; общая длина, м; приведенный уклон секционируемого участка трубопровода определяемые по следующим формулам:
d red = ( d1 l1 + d2 l2 + ... + dn ln ) / å l (1.35)
i red = ( i1 l1 + i2 l2 + ... + in ln ) / å l (1.36)
где l1, l2, ... , ln - длины отдельных участков трубопровода, м, с диаметра
ми d1, d2, ..., dn ,м, при уклонах i1, i2, ..., i3;
m - коэффициент расхода арматуры, принимаемый для вентилей
m = 0.0144, для задвижек m = 0.011;
n - коэффициент, зависящий от времени спуска воды t
при t = 2 ч (для труб диаметром 150 мм) n = 0.72
d red = 0,159 м (т.к. диаметр не меняется);
Для расчета выбран участок теплосети (см. профиль трассы в графической части) с установкой спускника в камере УТ2.
Уклон прилегающих участков определяется по формуле:
В соответствии с требованием [1] принимаем диаметр спускника 50 мм.
Диаметр воздушников по требованиям [1] составил 20 мм.
2. Проектирование ЦТП (специальный раздел)
При расчете и подборе оборудования ЦТП необходимо учитывать тепловой и гидравлический режим присоединяемых систем. Нами рассмотрено два варианта подключения нагрузки отопления и горячего водоснабжения абонентов котельных №3,22,28 к теплосети от врезки в ЦТК 337/03:
закрытая, с зависимым подключением нагрузки отопления (Рис.2.1)
закрытая, с независимым подключением нагрузки отопления (Рис.2.2)
Учитывая меньшие капитальные и эксплуатационные затраты к рассмотрению принята первая схема. Приготовление воды для нужд горячего водоснабжения осуществляется при этом в двухступенчатом теплообменнике. Приготовление теплоносителя для системы отопления производится с помощью смесительного клапана 14 и подмешивающего насоса 8. Снижение давления теплоносителя до допустимого в местных системах производится клапаном 4.
Для прокачки теплоносителя через теплообменники горячего водоснабжения и систему отопления необходимо установить циркуляционный насос на обратной линии. Ниже приведен расчет и подбор оборудования ЦТП.
Рис.2.1 – Двухступенчатая схема подогревателей ГВС с зависимым подключением системы отопления
Рис. 2.2 - Двухступенчатая схема подогревателей ГВС с независимым подключением системы отопления
Таблица 2.1 – Обозначение к Рис.2.1,Рис.2.2
2.1 Тепловой и гидравлический расчет пластинчатых водонагревателей
Схема подключения водонагревателей горячего водоснабжения в закрытых системах теплоснабжения выбирается в зависимости от соотношения максимального теплового потока на горячее водоснабжение
и максимального теплового потока на отоплениеПри таком соотношении применяют двухступенчатую схему присоединения водонагревателей горячего водоснабжения.
Расчет пластинчатых водонагревателей горячего водоснабжения произведен по методике, приведенной в [18].
Порядок расчета:
1) Максимальный расход сетевой воды на отопление:
2) Максимальный расход греющей воды на горячее водоснабжение:
3) Для ограничения максимального расхода сетевой воды на ЦТП в качестве расчетного принимается больший из двух расходов, полученных по пп 1,2:
4) Максимальный расход нагреваемой воды через І и II ступени водоподогревателя:
5) Температура нагреваемой воды за водоподогревателем І ступени:
6) Расчетная производительность водоподогревателя І ступени:
7) Расчетная производительность водоподогревателя II ступени:
8) Температура греющей воды на выходе из водоподогревателя II ступени tІІ2 и на входе в водоподогреватель І ступени tІ1:
9) Температура греющей воды на выходе из водоподогревателя І ступени:
10) Среднелогарифмическая разность температур между греющей и нагреваемой водой для І ступени водоподогревателя:
11) Среднелогарифмическая разность температур между греющей и нагреваемой водой для II ступени водоподогревателя:
12) По оптимальной скорости нагреваемой воды определяем требуемое число каналов:
13) Общее живое сечение каналов в пакете определяем по формуле (mH принимаем равным 8):
14) фактические скорости греющей и нагреваемой воды:
15) Расчет водоподогревателя І ступени:
а) средняя температура греющей воды
б) средняя температура нагреваемой воды
в) коэффициент теплоотдачи от греющей воды к стенке пластины:
г) коэффициент тепловосприятия от стенки пластины к нагреваемой воде:
д) коэффициент теплопередачи, принимая j = 0,8:
е) требуемая поверхность нагрева водоподогревателя І ступени:
ж) количество ходов (или пакетов при разделении на одноходовые теплообменники):
Принимаем два хода
з) действительная поверхность нагрева водоподогревателя І ступени:
и) потери давления І ступени водоподогревателя по греющей воде, принимая j = 1 и Б = 3:
по нагрваемой воде: