Смекни!
smekni.com

Проектирование четырехэтажной гостиницы в г. Краснодаре (стр. 4 из 18)

Qhy=[Qh – (Qint+Qs).У].bh,

Qhy=[361015,33 – (179352,69+44576,85).0.8].1,11=401877,58 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут) определяется по формуле (3.5):

qhdes=103.Qhy/Ah.Dd,

qhdes=401877,58 ×103/(2517,48.2682)=79,9 (кДж/(м2.0С.сут)).

31. Расчетный коэффициент энергетической эффективности системы отопления и централизованного теплоснабжения здания от источника теплоты принимаем h0des=0.5, так как здание подключено к существующей системе централизованного теплоснабжения.

32. Требуемый удельный расход тепловой энергии системой теплоснабжения на отопление здания принимается по таблице 3.7 – для здания 4–5 этажей равен 95 кДж/(м2.0С.сут). Следовательно, полученный нами результат значительно (более 5%) меньше требуемого 79,9<95, поэтому мы имеем возможность уменьшать приведенные сопротивления теплопередачи ограждающих конструкций, определенные по таблице 1 «б» СНиП II‑3–79*, исходя из условий энергосбережения. (Изменения вносим в пункт 19).

19. Для второго этапа расчета примем следующие сопротивления теплопередачи ограждающих конструкций:

- стен Rwreq=1,91 м2.0С / Вт

- окон и балконных дверей Rfreq=0.367 м2.0С / Вт – (Без изменения)

- глухой части балконных дверей RF1req=0.81 м2.0С / Вт – (Без измен.)

- наружных входных дверей Redreq=0.688 м2.0С / Вт – т.е. 0.6 от R0тр по санитарно-гигиеническим условиям;

- совмещенное покрытие Rcreq=1,63м2.0С / Вт

- перекрытия первого этажа Rf=2 м2.0С / Вт

20. Приведенный трансмиссионный коэффициент теплопередачи здания:

Kmtr=1.13 (608,4/1,91+114,5/0,367+4,48/0,81+11,25/0,688+

+0,6×629,37/1,63+0,6×629,37/2)/1997,37 = 0,929 (Вт/(м2.0С)).

21. (Без изменения). Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gmw=Gmc=Gmf=0.5 кг/(м2.ч), окон в деревянных переплетах и балконных дверей GmF=6 кг/(м2.ч). (Таблица 12 СНиП II‑3–79*).

22. (Без изменения). Требуемая краткость воздухообмена жилого дома na, 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na=0,293 (1/ч).

23. (Без изменения). Приведенный инфильтрационный (условный) коэффициент теплопередачи здания:

Kminf=0,319 (Вт/(м2.0С)).


24. Общий коэффициент теплопередачи, Вт/(м2.0С), определяемый по формуле:

Km=Kmtr+Kminf=0,929+0,319=1,25 (Вт/(м2.0С)).

Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh, МДж:

Qh=0.0864. 1,25.2682.1997,37=577624,52 (МДж).

26. (Без изменения). Удельные бытовые тепловыделения qint=10Вт/м2.

27. (Без изменения). Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=179352,69 (МДж).

28. (Без изменения). Теплопоступления в здание от солнечной радиации за отопительный период:

Qs=44576,85 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж:

Qhy=[Qh – (Qint+Qs).У].bh,

Qhy=[577624,52 – (179352,69 +44576,85).0.8].1.11= 542313,79 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут):

qhdes=103.Qhy/Ah.Dd,

qhdes=542313,79 ×103/(2517,48×2682)=91,28 (кДж/(м2.0С.сут)).

При требуемом qhreq=95 кДж/(м2.0С.сут).

По принятым сопротивлениям теплопередаче определимся конструкциями ограждений и толщиной утеплителя стен, совмещенного покрытия и перекрытия 1‑го этажа.

Стены: принимаем следующую конструкцию стены, теплотехнические характеристики материалов и толщину утеплителя:

1) Цементно-песчаный раствор

λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Кирпичная кладка из кирпича

глиняного обыкновенного на

цементно-песчаном растворе

λ = 0,70 Вт/мС; ρ=1800 кг/м3

3) Эффективный утеплитель «ISOVER»

λ = 0,06 Вт/мС; ρ=125 кг/м3

4) Пенобетонный блок

λ = 0,41 Вт/мС; ρ = 1000 кг/м3

Рисунок 4.1. Конструкция наружной стены

R0 = Rв + Rштук + Rкирп + Rутепл + Rблок + Rштук + Rн

R

отсюда δут = 0,052 м.

Совмещенное покрытие. Теплотехнические показатели материалов компоновки покрытия:

1. Цементно-песчаная стяжка:

плотность g=1800 кг/м3,

коэффициент теплопроводности

lА=0,76Вт/(м.0С).

2. Утеплитель – жесткие

минераловатные плиты:

плотность g=200 кг/м3,

коэффициент теплопроводности

lА=0,076Вт/(м.0С)

3. Железобетонная монолитная плита:

плотность g=2500 кг/м3, коэффициент теплопроводности lА=1,92Вт/(м.0С).

Сопротивление теплопередаче:

R0=Rв+Rж/б+Rутеп+Rст+Rн=R0треб;

1/8,7+0,2/1,92+dутеп/0,076+0,04/0,76+1/23=2,

откуда dутеп=0,1 м = 100 мм.

Перекрытие первого этажа. Теплотехнические характеристики материалов:

1. Дубовый паркет:

плотность g=700 кг/м3,

коэффициент теплопроводности

lА=0,35Вт/(м.0С).

2. Цементно-песчаная стяжка:

плотность g=1800 кг/м3,

коэффициент теплопроводности

lА=0.76Вт/(м.0С).

3. Утеплитель – пенополистирол:

плотность g=40 кг/м3,

коэффициент теплопроводности lА=0,041Вт/(м.0С). первого этажа

4. Железобетонная плита:

плотность g=2500 кг/м3, коэффициент теплопроводности lА=1.92Вт/(м. 0С).

Сопротивление теплопередаче:

R0=Rв+Rпар.+Rст+Rутеп+Rж/б+Rн=R0треб;

1/8,7+0,04/0,76+0,015/0,35+dутеп/0,041+0,2/1,92+1/23=2,197,

откуда dутеп=0,067 м = 70 мм.


4.4 Санитарно-техническое и инженерное оборудование

4.4.1 Теплоснабжение

Теплоснабжение осуществляется от существующих внутриплощадочных тепловых сетей. Теплоноситель – пар температурой 130 оС, давлением 2,8 атм.

4.4.2 Отопление и вентиляция

Отопление принято паровое. Паропровод проходит над отопительными приборами, а конденсатопровод над полом. Трубопроводы прокладываются с уклоном не менее 0,002. Удаление воздуха из конденсатопровода предусматривается из высших точек воздушными кранами. Для отвода конденсата на конденсатопроводе на выходе из здания и на выходе от каждой ветви предусмотрены конденсатоотводчики.

Трубопроводы в местах пересечения перекрытий прокладывать в гильзах, края гильз выполнить на 30 мм выше поверхности чистого пола. В качестве нагревательных приборов принять регистры из гладких труб диаметром 100.

Вентиляция помещений принята приточно-вытяжная с механическим и естественным побуждением воздуха.

В цокольном этаже запроектирована механическая вытяжка и естественный приток через открывающиеся фрамуги окон и двери. Из санузлов и бытовок предусмотрена механическая вытяжка.

4.4.3 Водоснабжение и канализация

В здании запроектированы следующие системы водоснабжения:

хозяйственно-питьевая;

противопожарная;

Источником хозяйственно-питьевого водоснабжения служит городская сеть водопровода диаметром 200 мм, давлением 1–2 ат.

Схема хоз-питьевого водоснабжения здания заключается в следующем: вода из городской сети хозпитьевого водопровода по существующему вводу диаметром 100 мм подается в здание и далее к санитарным приборам и поливочным кранам.

Расход воды на хозяйственно питьевые нужды составляет:

суточный – 3,5 м3;

максимально-часовой – 2,5 м3;

Подача горячей воды к душам и «бидэ» предусматривается от 2‑х электронагревателей, установленных около душевых кабин.

Внутренние сети хозяйственно-питьевого и горячего водоснабжения прокладываются из стальных водогазопроводных оцинкованных труб по ГОСТ 3262–75.

Схема противопожарного водоснабжения здания заключается в следующем: при возникновении пожара, вода из существующего пожарного водоема, емкостью 150 м3, забирается насосами, расположенными в существующей реконструируемой насосной станции противопожарного водоснабжения, и подается к пожарным кранам проектируемого здания, для ликвидации мелких очагов пожара.

В проектируемом здании запроектированы следующие системы канализации:

бытовая;

дождевая;

Схема работы бытовой канализации заключается в следующем: сточные от санитарных приборов самотеком направляются в наружную сеть канализации города диаметром 500 мм.

Ввиду того, что борта санитарных приборов, установленных в подвале, ниже уровня люка ближайшего канализационного колодца, проектом предусматривается установка на выпуске канализации из здания задвижки с электроприводом, работа которой автоматизирована от уровня сточных вод в канализационной трубе.

Расход бытовых сточных вод проектируемого здания составляет:

суточный – 3,5 м3;

максимально-часовой – 2,5 м3.