К недостаткам клееканифольного пенообразователя следует отнести сравнительно сложную технологию, длительность приготовления пены, короткие сроки хранения и необходимость помола компонентов до крупности песка. Пенобетон на клееканифольном пенообразователе в естественных условиях твердения характеризуется замедленным ростом прочности. Клей в составе пенообразователя не позволяет применять кислые добавки из-за его свертывания и разрушения пены. Клей и канифоль являются дефицитными материалами.
Алюмосульфонафтеновый пенообразователь так же, как и клееканифольный, отличается достаточно сложной технологией. Однако менее дефицитен по сравнению с клееканифольным и сапониновым, имеет сокращенные сроки (в 1,5 — 2 раза) приготовления пены. Основное его преимущество - длительность хранения без снижения качества.
Научно-исследовательский и производственный опыт показал, что наиболее перспективными для приготовления пеноматериалов являются анионоактивные ПАВ с высокой пенообразующей способностью, состоящие из биополимеров, построенных из атомов аминокислот, связанных между собой длинными полипептидными цепями.
Ряд предприятий по производству пенобетонных изделий использует пенообразователь немецкой фирмы "Неопор". Тюменская домостроительная компания использует высокоэффективный пенообразователь «Пеностром» отечественного производства. В Казахстане на предприятиях применяют пенообразователь "Унипор". В качестве пенообразователей пользуют также оксид амина, лаурил сульфат натрия и др.
В табл.2.1 приведены технические характеристики некоторых отечественных пенообразователей, которые могут использоваться для сравнительного анализа при разработке или применении новых видов отечественных и зарубежных пенообразователей.
Основными показателями действия пенообразователя являются: кратность и устойчивость пены, синерезис, расход воды для получения пены. Кратность пены определяется отношением объема готовой пены к объему исходного пенообразователя, для низкократных технических пен этот показатель равен 10, для высокократных - более 10. Устойчивость пены характеризует ее сохранность в течение определенного промежутка времени. Технические пены в течение одного часа не должны оседать более чем на 10 мм. Коэффициент использования пенообразователя должен быть более 0,8. Средняя плотность пен составляет 70-100 кг/м3.
Синерезис - это самопроизвольное уменьшение объема пены, сопровождающееся выделением значительного количества жидкой фазы. Уменьшение процесса синерезиса при приготовлении и использовании пен является важной задачей в технологии пенобетона.
Таблица 2.1
Технические характеристики пенообразователей
Пенообразователь | Количество воды на 1м3 бетона, л | Расход пенообразователя, кг/м3 | Кратность | Устойчивость, мин | Синерезис, мин |
Клееканифольный | 25 | 3,6 | 32 | 10 | 23 |
Смолосапониновый | 40 | 7,5 | 21 | 2 | 9 |
Алюмосульфонафтеновый | 40 | 9 | 20 | 2 | 6 |
ГК | 35 | 2 | 25 | 5 | 17 |
Пеностром | 25-30 | 1,2-1,5 | 35 | 12 | 28 |
Оксид амина | 45-50 | 1-1,2 | 21 | 11 | 25 |
Пожарный (ПО-6, ПБ-2000) | 25 | 1,4-1,5 | 37 | 4 | 11 |
Корректирующие добавки. В качестве добавок, ускоряющих твердение бетона, применяют сернокислый алюминий Al2( SO4)3 и хлористый кальций СаС12 (ГОСТ 450 - 77).
В качестве добавок - стабилизаторов структуры поризованной массы используются гипсовый камень (ГОСТ 4013 - 82), жидкое стекло R2On Н2О (ГОСТ 13078 - 81 "Жидкое стекло натриевое" и ГОСТ 18958 - 73 "Стекло жидкое калиевое").
Научно-исследовательские разработки, проведенные в последнее время, доказали возможность применения в качестве добавок активных дисперсных минеральных наполнителей, гидролизного лигнина, древесных опилок, микрокремнезема, тонкомолотых металлургических шлаков, цеолитов и др. материалов.
Наиболее эффективной добавкой является микрокремнезем — побочный продукт производства ферросилиция. В результате плавления в электродуговых печах кварца и железа при температуре, равной 2000°С, происходит выделение газообразного оксида кремния (SiO), который, достигая верха печи, окисляется до SiO2 и оседает в виде тонкодисперсных частиц на электрофильтрах. Основным компонентом микрокремнезема является аморфный диоксид кремнезема (87 - 92 %), у которого истинная плотность равна 2,94 г/см3, а насыпная — 0,2...0,3 г/см3, удельная поверхность 40 - 50 м2/г. Химический состав микрокремнезема приведен в табл.2.2
Таблица 2.2
Химический состав микрокремнезема
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | ППП |
87,6-92,3 | 0,38-0,75 | 1,1-2,3 | 1,3-1,8 | 2,8-3 | 1,6-2,4 |
В смеси с известью микрокремнезем проявляет свойства активной минеральной добавки, связывая до 7% гидрооксида кальция в низкоосновные гидросиликаты кальция за 5 — 7 часов нормального твердения, а за 30 суток связывается до 1 г Са(ОН)2 на 1 г микрокремнизема. Эта добавка придает ячеистому бетону следующие положительные свойства: позволяет снизить среднюю плотность, практически не уменьшая прочности, т.е. экономить вяжущее; снижает расход порообразователей; сокращает длительность технологической выдержки перед термообработкой; улучшает макроструктуру бетона. Расход добавки составляет 5 - 30 % от веса сухих компонентов. Вода, применяемая для получения ячеистого бетона, должна удовлетворять требованиям ГОСТ 23732 - 79. Водородный показатель воды составляет 4 - 9 единиц.
3. Технология крупноразмерных изделий
В целях совершенствования технологического процесса, снижения металлоемкости оборудования, уменьшения площадей и высот производственных зданий ВНИИстромом им. ГШ. Будникова разработаны технология и оборудование бескрановой конвейерной линии (БКЛ) по производству стеновых блоков из ячеистого бетона с применением комплексной вибрации мощностью от 30 до 100 тыс. м3 в год (рис. 3.1, 3.2).
Особенностью этой технологии является применение совместного сухого помола известково-цементно-песчаного вяжущего, а также мокрого помола песка. В смесеприготовительном отделении использован ряд серийно выпускаемых машин (насосы, питатели, дозаторы, мешалки), для изготовления смеси с пониженным водотвердым отношением использован вибросмеситель СМЦ-40Б
Для создания оптимальных условий выделения газа (водорода), обеспечиващего вспучивание массива и образование ячеистой структуры в течении 5-10 мин после заливки смеси в формы применена вибрационная площадка с горизонтально направленными колебаниями типа К-494.
Выбор формуемого массива высотой 1,2 м и шириной 1,3 м позволил применять для тепловлажностной обработки наиболее экономичные неметаллоемкие, автоклавы диаметром 2 м, максимально увеличить коэффициент их заполнения.
4. Контроль качества продукции
Качество материалов оценивают совокупностью числовых показателей технических свойств, которые были получены при испытаниях соответствующих образцов. Существуют стандарты, устанавливающие для большинства материалов и изделий обязательные методы испытаний.
На продукцию, имеющую межотраслевое значение, разрабатываются Государственные стандарты (ГОСТы) Российской Федерации. Они содержат требования к безопасности этой продукции для окружающей среды, жизни, здоровья и имущества, а также пожарной безопасности. Кроме того, в них приводятся основные показатели и методы контроля качественных характеристик материала. Нередко в ГОСТе сообщается классификация материала по одному или нескольким признакам. Указываются конкретные числовые значения свойств с маркировкой выпускаемой продукции, правила приемки и хранения материала, допуски и посадки изделий.
Кроме государственных имеются стандарты отраслевые, разрабатываемые министерствами на свою продукцию, — материалы или сырье сравнительно ограниченного ассортимента и применения. Существуют стандарты на строительные материалы, выпускаемые отдельными предприятиями. Они обязательны для данного предприятия (фирмы) при доставке продукции по договору. Имеются стандарты научно-технических, инженерных обществ и других общественных объединений. Стандарты (ГОСТы) периодически обновляются на основе последних достижений науки, техники и технологии. Они имеют силу закона, т. е. их категорически запрещено нарушать. Они не являются объектом авторского права (ст. 6 Закона о стандартизации).
Большинство строительных материалов, применяемых для несущих конструкций и работающих под влиянием статических или динамических нагрузок, маркируют с учетом их реальных прочностных показателей. Для теплоизоляционных, гидроизоляционных, акустических и некоторых других материалов принимают с целью маркировки не прочностные, а другие физические свойства — теплопроводность, водонепроницаемость, морозостойкость, среднюю плотность и т. п.