Ця область 1-2 називається Шведовською областю пластичної течії з найбільшою в'язкістю
де τст - умовно-статична межа текучості, гранична напруга зсуву, відповідна первинному руйнуванню структури; γ - градієнт швидкості;
2-3 - зона лавиноподібного руйнування структури;
3-4 - зона в'язкопластичної течії з якнайменшою пластичною в'язкістю по Бінгаму
(6.41)4-5 - зона ньютонівської течії з постійною в'язкістю гранично зруйнованої структури.
Визначення властивостей реологій оброблюваних в'язких і в’язкопластичних матеріалів здійснюється на капілярних вискозиметрах і реометрах різних конструкцій.
Капілярний вискозиметр є циліндровим каналом (капіляр) і системою вимірювання витрати матеріалу - (q) і тиск - (р), продавлюючого через нього досліджуваний матеріал. По набутих значеннях q і p визначають головні характеристики "потоку" - напруга зсуву (τ) або в'язкість (μ) у функції градієнта швидкості (γ). Довжина капіляра повинна бути достатньою, щоб на значній його частині існував сталий профіль швидкостей.
Суть ротаційної вискозиметрії полягає у визначенні зв'язку напруги зсуву на поверхні внутрішнього циліндра з градієнтом швидкості на тій же поверхні.
Ротаційний вискозиметр придатний для вимірювання в'язкості ньютонівських рідин, пластичних дисперсних систем, розплавів полімерів.
Для числового визначення параметрів реологій високов'язких пластичних матеріалів розроблені прилади і методи. Проте через специфічні властивості в'язко-пластичних матеріалів ці прилади часто виявляються непридатними для досліджень реологій. Характеристику реології в'язко-пластичного матеріалу, як правило, одержують у вигляді графіка залежності в'язкості (або напруги зсуву) від градієнта швидкості. З точністю, достатньою для інженерних цілей, можуть бути одержані відомості про поведінку матеріалу в процесі деформації, якщо скористатися поняттям ефективної (аномальної) в'язкості.
Аномалія в'язкості була знайдена Ф.Н. Шведовым і полягала в тому, що заміряна в'язкість зменшувалася із збільшенням градієнта швидкості всупереч існуючому уявленню про постійність цього коефіцієнта у формулі Ньютона.
Поняттям ефективної в'язкості дуже зручно користуватися, оскільки це дає можливість замість 20 критеріїв, що описують поведінку в'язко-пластичних матеріалів при їх деформації, користуватися практично залежністю
.Для спрощення висновків розрахункової залежності допускають μэф = const, тобто що коефіцієнт μэф відображає деяке "середнє" значення в'язкості, визначуване деяким "середнім" значенням градієнта швидкості "потоку" середовища в робочому каналі (γср. э), утворене впливаючими на середовище стінками елементів машин. Таке "усереднювання", безумовно, позначається на точності розрахунків. Проте, для визначення енергосилових параметрів формуючих машин вага більше вживання знаходить практика характеристики властивостей реологій оброблюваних матеріалів залежністю
. Одержані у такий спосіб розрахункові результати добре співпадають з експериментальними даними, і точність одержаних розрахункових рівнянь в основному залежить від точності визначення характеристик реологій в'язко-пластичної маси, що переробляється.Повна крива реології пластичної глини може бути побудована за допомогою лабораторних установок, які відповідають фізичним моделям реальних машин. Як такі установки були використані лабораторні вальці, прес з конусом і глинорозтирачем. Попередні теоретичні дослідження показали, що зміна величини зусиль розпорів у вальцях, тиску і витрати оброблюваного матеріалу в конусній головці стрічкового пресу, максимального тиску на стінці глинорозтирача пропорційні зміні в'язкості глиномасси і геометричним параметрам робочого каналу установки.
Розрахувавши для кожного випадку градієнт швидкості і побудувавши графік залежності "в'язкість - градієнт швидкості" для кожної машини, можна шляхом порівняння цих графіків зробити висновок про достовірність пропонованої методики. Збіг набутих значень в'язкості при відповідних значеннях градієнтів швидкості для всіх трьох установок підтвердив положення, згідно якому властивості реологій пластичних глин можуть характеризуватися кривій реології в координатах
- градієнт швидкості перебігу оброблюваного матеріалу.На мал.6.21 представлений графік залежності ефективної в'язкості від градієнта швидкості глини, одержаний на моделях вальцов і преса. Як видно з графіка, обидві криві, одержані на моделях різних машин, достатньо близькі один до одного.
На мал.6.22 показаний графік залежності в'язкості від градієнта швидкості Кембрійської глини в інтервалі їх формувальної вогкості в діапазоні градієнтів швидкостей роботи глинооброблюючого устаткування. Графік побудований в логарифмічних координатах, в яких залежність
- є прямою лінією.Для математичного опису цієї графічної залежності найбільш придатне статечне рівняння вигляду
Параметр ψ може бути легко знайдений з графіка, оскільки тангенс кута нахилу прямої рівний (ψ - 1). З другого боку, при градієнті швидкості, рівному 1,
і коефіцієнт визначається по відрізку, що відсікається прямій на ординаті . Чим вища в'язкість матеріалу, тим вище розташована його пряма на графіку.Мал.6.21. Крива реології глиномасси Галіцинського керамічного заводу: 1 - з урахуванням пружних і пластичних властивостей (конус); 2, 3 - з урахуванням тільки пластичних властивостей (2 - циліндр Ø0,062 м; 3 - циліндр Ø0,012 м).
Мал.6.22. Графік залежності в'язкості від градієнта швидкості Беськудниковськой глиномасси вогкістю: 1-1' - 22%; 2-2' - 24%; 3-3' - 26%; 1-1' - 22% і Кембрійською глиномасси вогкістю: 4-4' - 20%; 5-5' - 24,5%; 6-6' - 26%; I - ділянка кривих, одержуваних на щілистій насадці шнекового преса; II - крива, одержувана на глинорозтирачі для Беськудниковськой глиномасси вогкістю 24%; III - ділянка кривих, одержуваних на лабораторній валковій установці.
Таким чином, шляхом порівняння кривої досліджуваної глини реології з кривою вивченою реології, можна на підставі графіка не тільки якісно оцінити деформативні властивості матеріалу, що цікавить нас, але, враховуючи однозначну залежність зусиль, що виникають у вузлах машин, від в'язкості матеріалу і їх геометричних характеристик, графічно визначити орієнтовну величину основних параметрів цих машин, що є початковими при їх подальших розрахунках.
Сучасне виробництво будівельних матеріалів, виробів і конструкцій характеризується широким використовуванням багатокомпонентних будівельних сумішей. При їх приготуванні значна увага відводиться технологічному процесу дозування.
Дозуванням називається процес відмірювання певної кількості (об'єму, маси) матеріалу або рідини із заданою точністю (погрішністю).
Дозування походить від слова дозувати - відміряти дозу. Пристрої для дозування сипких матеріалів і рідких продуктів називаються дозаторами. Дозування сипких матеріалів і рідких продуктів в даний час є обов'язковим технологічним процесом при виробництві матеріалів і виробів високої якості.
Дозування можна класифікувати по наступних основних ознаках: призначенню; принципу дії (відмірюванню дози); характеру роботи; інтенсивності відмірювання (зважування); контролю точності дозування; способу управління і ін.
За призначенням дозування підрозділяється на дозування сипких кускових і порошкоподібних (дисперсних) матеріалів, рідин і рідких продуктів (шламів, суспензій і т.д.).
За принципом дії (відмірюванню дози) дозування ділиться на об'ємне і вагове (масове) і рідше на змішане (при приготуванні керамзитобетону).
По характеру роботи дозування підрозділяється на циклічне (дискретне) і безперервне. При циклічному дозуванні відмірювання дози відбувається в мірній або ваговій місткостях (бункерах). Після відмірювання дози місткості звільняються від матеріалу або рідини і процес дозування повторюється. При безперервному дозуванні сипкий матеріал або рідина подаються (транспортуються) безперервно із заданою об'ємною або масовою продуктивністю.