Дисковий (тарілчатий) живильник має привід постійного або змінного струму. Вживання електродвигуна змінного струму підвищує надійність і економічні показники.
Для вимірювання малих витрат матеріалів (наприклад, ПАВ, вода, добавки і ін), що подаються в цементні трубні млини, використовують дифманометри, що відносяться до приладів постійного перепаду тиску [1, 30, 94]. Дифманометри, передбачені для вимірювання перепадів тиску на різних типах звужуючих пристроїв, одним словом, пневмометричних трубках, можуть бути або показуючими з інтеграторами або без них, або бесшкальними датчиками з індуктивним або диференціально-трансформаторним дистанційним зв'язком з вторинними приладами.
Погрішність дозування - це відхилення маси або об'єму дози матеріалу від її заданої (що вимагається) величини [1,4,5].
Абсолютна погрішність дозування визначається з виразів:
(9.2) (9.3)Відносна погрішність дозування - це відношення абсолютної погрішності до заданої (що вимагається) величини дози
(9.4) (9.5)В табл.9.1 і 9.2 приведені основні параметри циклічного і безперервного дозування при виробництві бетону і розчину.
Тривалість зважування дози (порції) матеріалу при дискретному дозуванні визначається з виразу [94]
де Мтах - максимальна маса дози матеріалу, кг; Qmp - необхідна продуктивність живильника по заповненню бункера дозатора, т/ч.
Таблиця 9.1.
Параметри циклічного дозування при виробництві бетонів і розчинів
Матеріал | Межазважування, кг | Цикл дозування | Погрішність дозування% | Клас точності | |
Якнайменший | Найбільший | ||||
Цемент | 20 | 100 | 60 | 2 | 2 |
Цемент | 40 | 200 | 30 | 1 | 1 |
Цемент | 100 | 500 | 60 | 2 | 2 |
Вода | 40 | 200 | 60 | 2 | 2 |
Пісок | 100 | 500 | 30 | 2 | 2 |
Щебінь | 200 | 800 | 45 | 2 | 2 |
Щебінь | 400 | 1600 | 45 | 2 | 2 |
Керамзит | 250 | 1300 | 90 | 3 | 3 |
Таблиця 9.2.
Параметри безперервного дозування при виробництві бетонів і розчинів
Матеріал | Найбільша крупна, мм | Продуктивністьт/ч | Клас точності |
Цемент | - | 4-25 | 1 |
Цемент | - | 25-100 | 1 |
Щебінь | 40 | 8-40 | 2,5 |
Щебінь | 70 | 5-50 | 2,5 |
Щебінь | 100 | 10-100 | 2 |
Тривалість циклу дозування
(9.7)де tвыгр - тривалість вивантаження матеріалу з вагового бункера, с; tавт - тривалість спрацьовування елементів системи автоматики tавт= 1,5 - 2 с.
Швидкість закінчення матеріалу з бункера дозатора
(9.8)де λ - коефіцієнт закінчення λ = 0,4 - 0,5; q - прискорення сили тяжіння, м/с2; R - гідравлічний радіус отвору закінчення, м.
В роботі [4] швидкість закінчення матеріалу рекомендується визначати по формулі
(9.9)де QM - задана масова витрата матеріалу при закінченні; F0 - площа отвори закінчення; ρч - густина частинки матеріалу; ε - порозність сипкого матеріалу (порошку) ε= (ρч - ρм) / ρч, ε ≈ 0,6; ρм - густина матеріалу.
Виходячи з допустимої абсолютної погрішності ΔМа6с дозування (для мінімальної дози) і мінімальної необхідної подачі (продуктивності) матеріалу Qmp, можна розрахувати режим завантаження матеріалу у ваговий бункер дозатора.
Спочатку визначають QM, відповідне значенню ΔМабс, і порівнюють його із знайденим Qmp. Якщо Qmp ≤ QM, то ваговий бункер завантажують на одному режимі (одностадійне дозування), а площа F0 закінчення береться з технічної характеристики бункерів (силосів) для заданого значення QM. У разі Qmp > Qmваговий бункер дозатора завантажуються малими дозами, при Qmp = Qmбункер завантажується великими дозами - спочатку при повністю відкритій заслінці, а потім при частково закритій заслінці, тобто при площі F0, відповідній даному значенню ΔМабс. В цьому випадку первинна, так звана груба засипка ведеться з подачею, що розраховується по формулі
(9.10)де Мо - маса дози, кг; МД - маса дози при досипанні, кг; tД - тривалість завантаження бункера при досипанні матеріалу, с.
(9.11)Для забезпечення високої точності дозування приймально-витратний бункер повинен обладнуватись аераційним, вібраційним і іншими струшуючими пристроями і механізмом регулювання швидкості закінчення матеріалу, сприяючим забезпечити стабільне і рівномірне завантаження вагового бункера дозатора.
При напівсухому пресуванні формувальних будівельних сумішей засипка прес-форм є складним технологічним процесом, що полягає в загальному випадку в закінченні дискретного сипкого середовища і заповнення нею замкнутого простору у вигляді прес-форми. Зв'язок засипки прес-форм з якістю одержаних при формуванні виробів виявляється в наступному. По-перше, при пресуванні до заданого тиску (наприклад, на гідравлічних пресах з гідравлічним обмежувачем тиску) зміна кількості формувальної суміші в прес-формі приводить до зміни висоти (товщина) виробу. По-друге, при пресуванні до заданої товщини виробу (наприклад, на механічних пресах) різниця в кількості формувальної суміші в прес-формі веде до неоднакового тиску пресування. Крім того, при значному тиску (вище заданих) і нестабільності процесу засипки знижується надійність устаткування. По-третє, при пресуванні в багатомісних (багатокубел) прес-формах має місце нерівномірність розподілу формувальної суміші по окремих прес-формах. По-четверте, при однаковій висоті засипки прес-форм, але різній кількості формувальної суміші в них, вироби одержують однакову товщину в стислому стані, але різну після випресовки через неоднакову густину і пружну деформацію напівфабрикату (пресування).
Отже, засипку прес-форм формувальною сумішшю можна віднести до об'ємного дозування і до процесу закінчення сипкого матеріалу з отвору відповідного пристрою [24, 44, 79]. Процес засипки - це наповнення прес-форм формувальною сумішшю з максимальною густиною і рівномірністю і мінімальною погрішністю. Пристрої, що забезпечують процес засипки прес-форм формувальною сумішшю, одержали назву засипних (наповнювальних) пристроїв, прес-мішалок, наповнювачів, завантажувальних пристроїв і т.п. [15, 24, 79].
Засипку прес-форм при напівсухому пресуванні формувальних сумішей (мас) можна представити у вигляді блок-схеми (мал.9.5).
Кожна з приведених в блок-схемі технологічних операцій має певне значення і характеризується оптимальними параметрами.
До суміші в бункерах пред'являються вимоги як по формуванню певного запасу, так і по стабілізації її властивостей. Засипка (дозування) формувальної суміші з порушеними властивостями приводить до виробництва неякісних виробів. При засипці як мірна місткість використовуються прес-форми, змонтовані в столі преса. Переміщення, заповнення і розподіл формувальної суміші за об'ємом прес-форми на практиці здійснюється уручну або частіше за допомогою механічних засобів. Основна вимога при переміщенні прес-форми з першої позиції на другу полягає в недопущенні перерозподілу суміші в об'ємі прес-форми. Загальна тривалість технологічних операцій
при виробництві пресованих будівельних виробів повинна бути менше часу циклу пресування (tnp). Тому швидкодії процесу засипки і засипних пристроїв винне уділятися особлива увага [24, 44, 79].Мал.9.5. Блок-схема засипки прес-форм при напівсухому пресуванні
Основи теорії засипки прес-форм і засипних пристроїв висловлені в роботах Р.А. Андрієвського, В.Е. Берниковського, Е.В. Задорожного, А.С. Ільіна, С.С. Кипарісова, Е.Е. Кольма-на-Іванова, Д.В. Кондрашова, І.Д. Радомисельського, І.М. Фе-дорченко, А.А. Соловьева, Р.Я. Попильского і інших.
Кількість формувальної суміші, яка повинна бути засипано в прес-форму перед пресуванням, в масовому або об'ємному виразах визначається по формулах [15, 24, 79]:
(9.12) (9.13) (9.14)де ρм - густина безпористого матеріалу виробу; VИ - об'їм вироби; ПІ - пористість виробу; K1 - коефіцієнт, що враховує втрати формувальної суміші при пресуванні, К1 = 1,005-1,01; К2 - коефіцієнт, що враховує втрати маси виробу (напівфабрикату) при термічній обробці, К2= 1,01-1,03; Fnф - площа прес-форми; hсм - товщина суміші в прес-формі (глибина, висота засипки прес-форми); ρ3 - густина засипки.