П.И. Новосельский і В.В. Шестоперов експериментально довели, що адгезіонні сили мало залежать від складу сумішей і матеріалу випромінюючих поверхонь, тому можна вважати, що при прискореннях 6g відриву суміші ще не відбувається.
При дотичних коливаннях випромінюючої поверхні по відношенню до бетонної суміші можливість таких розривів виключається, що дає можливість дещо інтенсифікувати процес ущільнення шляхом підвищення розмахів прискорення випромінюючої поверхні.
Ефективність ущільнення бетонної суміші великою мірою залежить від того, що розташовує по відношенню до неї випромінюючій поверхні. Якщо випромінююча поверхня є площиною і розташовується зверху на бетонній суміші, таке ущільнення називають поверхневим. Якщо випромінююча поверхня (звичайно циліндрова) розташовується усередині масиву бетонної суміші, ущільнення називають глибинним. Якщо конфігурація випромінюючих поверхонь повторює конфігурацію виробу, тобто є формою, і бетонна суміш розташовується над нижньою випромінюючою поверхнею (звичайно площиною, звану піддоном), а вся форма в цілому скоює який-небудь коливальний рух, який розповсюджується у всьому об'ємі бетонної суміші, що знаходиться в ній, ущільнення називають об'ємним. Воно забезпечує високий ступінь ущільнення бетонної суміші і набуло найбільше поширення у виробництві збірного залізобетону. З цієї причини розглянемо деякі специфічні особливості об'ємного ущільнення.
При коливаннях форми відрив суміші від її випромінюючих поверхонь, перпендикулярних напряму коливань, і пов'язані з цим підсос повітря і ущільнення суміші почнуться при вказаних вище значеннях прискорень (6...7g). Якщо форма скоює гармонійні коливання із заданою частотою?, те максимально допустиме значення її амплітуди коливань хаmax = 6g/ω.
При об'ємному ущільненні застосовують горизонтально і вертикально направлені коливання форми. При горизонтально направлених коливаннях форми ущільнення бетонної суміші здійснюється в основному за рахунок дотичних коливань піддону. Нормальна дія на бетонну суміш в цьому випадку походить лише від бортів торців форми, площа яких мала. Тому, як вже наголошувалося, при горизонтально направлених коливаннях може бути досягнута деяка інтенсифікація ущільнення бетонної суміші у разі формування тонкостінних виробів за рахунок підвищення прискорень форми. Ефективними шляхами підвищення прискорень є вживання бігармонічних і ударно-вібраційних коливань форми з бетонною сумішшю. Проте при будь-якій формі горизонтально направлених коливань вони повинні бути обов'язково симетричними, тобто прискорення при русі форми і в одну, і в іншу сторони повинні бути однаковими. Якщо симетрія коливань буде порушена, то виявиться транспортний ефект, і бетонна суміш почне переміщатися у бік менших прискорень, що неприпустимо, оскільки приведе до розшарування бетонної суміші і різностінності виробів.
При вертикально направлених коливаннях форми відрив суміші від піддону можливий лише в тій частині періоду її руху, коли інерційні сили, прикладені до частинок бетонної суміші, діють вгору. При дії ж інерційних сил на частинки вниз суміш притискається до піддону форми. Ця обставина відкриває перспективи інтенсифікації процесу ущільнення бетонної суміші за рахунок використовування асиметричних вертикально направлених коливань форми.
Для пояснення цього явища розглянемо сили, діючі на деякий об'єм бетонної суміші масою тб, що знаходиться на горизонтальній поверхні-піддоні, який скоює вертикально направлені коливання за законом x0 (t) (мал.6.2)
Мал.6.2. Схема сил, діючих на бетонну суміш, що знаходиться на площині, що скоює вертикально направлені гармонійні коливання
Рівняння руху цього об'єму можна записати у вигляді
(6.4)Тут х - переміщення об'єму щодо піддону; перший член справа - інерційна сила, обумовлена коливаннями піддону; другий - вага частинки суміші;
При русі частинок разом з піддоном х = 0, звідки нормальна реакція (6.5)Відрив частинки від піддону відбувається при N= 0, тобто при
(6.6)Звідси видно, що відрив можливий лише при негативних прискореннях піддону. Експериментально встановлено, що відрив може відбутися в тому випадку, якщо
(6.7)При відриві бетонної суміші від піддону в простір, що утворився, спрямовується повітря, яке потім перетворюється на бетонну суміш, що приводить до її ущільнення. Таким чином, для того, щоб не відбувалося ущільнення, негативні прискорення піддону не повинні перевершувати по модулю 7g.
Мал.6.3. Зразкові осцилограми прискорень при гармонійних і асиметричних коливаннях
При гармонійних коливаннях графік прискорення піддону симетричний (мал.6.3, крива 1), і максимальні значення позитивних і негативних прискорень рівні між собою. При асиметричних коливаннях (мал.6.3, крива 2) можна сформувати такі закони руху піддону, при яких максимум модуля негативного прискорення
менше 7g, а максимум позитивних прискорень досягає 15-20 g.Таким чином, при гармонійних коливаннях піддону для виключення відриву бетонної суміші необхідно обмежувати амплітуду прискорення, тоді як при асиметричних коливаннях достатньо обмежити по модулю лише негативні прискорення піддону. Позитивні ж прискорення можуть бути доведені до 20 g. В результаті виключається можливість відриву бетонної суміші від піддону, а великі інерційні сили, що притискують суміш до піддону, з одного боку, сприяють поліпшенню процесу ущільнення за рахунок виникаючого при цьому трамбуючого ефекту, і з другого боку, підвищують швидкості відносного проковзування частинок бетонної суміші, від яких, як відомо, залежить ступінь зниження її внутрішніх опорів, і, відповідно, якість ущільнення. Цим і пояснюється підвищена ущільнююча здатність машин з асиметричними коливаннями.
Асиметричні коливання робочих органів з необхідними співвідношеннями максимумів модуля позитивних і негативних прискорень найбільш просто досягаються в ударно-вібраційних ущільнюючих машинах шляхом відповідного підбору їх основних параметрів.
Випромінюючі поверхні робочих органів ударно-вібраційних машин здійснюють складні за формою коливання, які можуть бути представлені у вигляді суми гармонік, перша з яких ω1 (частота основного тону) рівна частоті ударів, друга ω2 = 2ω1, третя ω3 = 3ω1 і т.д., тобто в таких випадках говорять, що спектральний склад коливань збагатив вищими гармоніками, з яких перші 4...5 звичайно достатньо значущі. Ця обставина, з викладених вище причин, покращує ущільнення дрібнозернистих сумішей. Останніми роками завдяки своїй конструктивній простоті і високій ущільнюючій здатності все більше поширення набувають ударно-вібраційні ущільнюючі машини.
При розрахунках вібраційних ущільнюючих машин обов'язково виникає необхідність обліку впливу бетонної суміші на динаміку машини. Приведений вище опис закономірностей вібраційного ущільнення бетонної суміші говорить про те, що для вирішення цієї задачі необхідно розглядати ущільнюючу машину і бетонну суміш як єдину динамічну систему. Але бетонна суміш є складним в’язкопластичним середовищем, яке за наявності повітря (особливо в початковий період ущільнення) володіє і деякими пружними властивостями. Все це украй утрудняє рішення єдиної динамічної системи "ущільнююча машина - бетонна суміш". Тому при практичних розрахунках ущільнюючих машин прийнято враховувати вплив бетонної суміші на їх динаміку введенням коефіцієнта приєднання бетонної суміші.
При завантаженні форми бетонною сумішшю, що знаходиться на працюючій формуючій машині із зарезонансною настройкою, відбувається зниження амплітуд віброзміщень через збільшення маси, що коливається. Таке ж по величині зниження амплітуд віброзміщень може бути досягнуте шляхом жорсткого приєднання до порожньої форми зосереджених вантажів. Відношення маси цих вантажів до всієї маси бетонної суміші, завантажуваної у форму, називають коефіцієнтом приєднання бетонної суміші k1. Експериментально встановлено, що залежно від густини армування і складу бетонної суміші k1= 0,15...0,4. Склад суміші робить значно менший вплив на k1,ніж густина армування. Тому звичайно для малоармованих виробів приймають k1 = 0,2...0,25, для середньоармованих k1 = 0,25...0,3 і для густоармованих k1 = 0,3...0,4. При розрахунку з гармонійними вертикально направленими коливаннями, що працюють в зарезонансному режимі, їх розглядають в спрощеному вигляді як диссипативну систему (тобто з розсіюванням енергії) з одним ступенем свободи. При цьому вібруюча маса буде рівна