Смекни!
smekni.com

Разработка организационно-технологической схемы возведения фундамента (стр. 1 из 5)

Задание 1

Определение потребности в материально-технических ресурсах при кирпичной кладке

1.1 Определить потребность в кирпиче и растворе по усредненным нормативам на смену месяц для бригады каменщиков из n человек при средней выработке V м3/смену

Потребность кирпича на смену определяется по формуле

N = 0,4*n*V, тыс. шт. (1.1)

где

N – количество кирпича, тысяча штук

n – численность бригады

V – средняя выработка

N = 0,4*15*1,9 = 11,4 тыс. шт.

Потребность раствора на смену определяется по формуле

Q = 0,25*n*V, м3 (1.2)

Где

Q – потребность раствора, м3

n – численность бригады

V – средняя выработка


Q = 0,25*15*1,9 = 7,13 м3

Производим перерасчет полученной потребности обыкновенного кирпича на эффективный (полуторный) с помощью переводного коэффициента к = 1,35. N = 11,4*1,35 = 15,39 тыс. шт.

Согласно нормам расхода строительных материалов

N = 0,392*15*1,9 = 11,17 тыс. шт.

Q = 0,245*15*1,9 = 6,98 м3

Расход основных материалов на 1 м3 кладки

Таблица 1.1

Наименование работ Материалы Единица измерения Норма расхода при толщине стен, кирпичей
1.0 1.5 2.0 2,5
Кладка стен наружных и внутренних из кирпича глиняного обыкновенного или силикатного одинарного полнотелого с простым архитектурным оформлением Кирпич шт. 400 395 394 392
Раствор м3 0,221 0,234 0,24 0,245
То же из кирпича пустотелого Кирпич шт. 400 395 394 392
Раствор м3 0,223 0,236 0,242 0,247
То же из кирпича глиняного и силикатного модульного Кирпич модульный шт. 300 295 294 292
Раствор м3 0,205 0,216 0,222 0,227
Кладка стен наружных и внутренних из кирпича глиняного обыкновенного или силикатного одинарного полнотелого со средним архитектурным оформлением Кирпич шт. 405 402 400 398
Раствор м3 0,237 0,241 0,24 0,245

1.2 Определить количество поддонов кирпича и транспортных средств для обеспечения сменной потребности в материальных ресурсах

Рабочим местом каменщиков называется пространство, в пределах которого находится возводимая конструкция или ее часть, перемещаются рабочие, а также размещены требуемые для кладки материалы, инструменты и приспособления.

Рис. 2. Схема размещения материалов на рабочем месте при кладке стен с проемами: 1 — рабочая зона; 2 — зона материала

Таблица 1.2

Тип поддона и его наименование Номинальная грузоподъемность поддона, т Номинальные размеры настила поддона, мм Масса поддона, кг, не более
ПОД - поддон на опорах, деревянный 0,75 520Х1030 22
ПОМ - поддон на опорах, металлический 0,75 520Х1030 22
ПОД - поддон на опорах, деревянный 0,9 770Х1030 25
ПОМ - поддон на опорах, металлический 0,9 770Х1030 30
ПКДМ - поддон с крючьями, деревометаллический 0,75 520Х1030 22

Определяем количество поддонов необходимое за смену 11,4 / 0,4 = 28 шт.

КАМАЗ бортовой имеет небольшой размер по сравнению с фурой, однако, больший объем и грузоподъемность, по сравнению с ЗИЛами и Газелями. Эти качества являются важными для заказчика, так как есть возможность перевезти большой объем груза одновременно. КАМАЗ борт особо удобен при транспортировке крупногабаритных грузов, устойчивых к воздействию погоды, либо требующих загрузки через верх (при помощи автокранов или автопогрузчиков). Обычно КАМАЗ бортовой используется для перемещения строительных материалов. Конструкция позволяет осуществлять надежное крепление, а высокая проходимость позволит доехать до стройки и без хорошей дороги.

Сменная эксплуатационная производительность (

) грузового автомобиля определяется по формуле:

, (1.3)

где

QАТС - грузоподъемность автомобиля, т;

VСР - средняя техническая скорость, км/ч;

tРС - время работы автомобиля в смену, ч.;

KИП – коэффициент использования пробега;

KИГ - коэффициент использования грузоподъемности;

LПГ – пробег автомобиля с грузом за смену, км.

tПР – продолжительность простоев автомобиля под погрузкой и разгрузкой, ч.

Коэффициент использования пробега определяется по формуле:

(1.4)

где

LПГ – пробег с грузом за смену, км.;

LОБЩ - общий пробег за смену.

Коэффициент использования грузоподъемности определяется по формуле:

, (1.5)

где

QФАКТ – масса фактически перевезенного груза за одну поездку, т;

QНОМИН – номинальная грузоподъемность, т.

Проверяем условие обеспечения нормальной эксплуатации автомобиля при загрузке по фактической массе перевозимого груза по формуле:

, (1.6)

где

V – объем груза в кузове автотранспортного средства, м³;

ρ – плотность материала, т/м³;

КРХ – коэффициент разрыхления груза.

Требуемое количество автотранспортных средств на маршруте (А, шт.) определяется по формуле:

, (1.7)

где

tР – время выполнения перевозок на маршруте конкретным АТС, ч;

tСМ – продолжительность рабочей смены, ч.

Время выполнения перевозок определяется по формуле:

, (1.8)

где

- общее время движения АТС, ч;

- общее время простоя АТС под погрузкой и разгрузкой, ч.

Время движения АТС за один оборотный рейс на маршруте определяется по формуле:

, (1.9)

где

LМ – протяженность маршрута в одном направлении, км;

Vt – средняя техническая скорость, км/ч;

LОБЩ – общий пробег, км.

Общий пробег определяется по формуле:

, (1.10)

где

LМГ – пробег на маршруте с грузом в одну поездку, км;

LМП – пробег на маршруте в обратном направлении за грузом порожним, км;

n – количество ездок АТС на маршруте.

Количество ездок на маршруте определяется по формуле:

, (1.11)

где

QОБЩ – масса груза планируемого к перевозке, т;

QНОМИН – номинальная грузоподъемность, т.

КИГ – коэффициент использования грузоподъемности.

Рассчитываем перевозку кирпичей с завода ДСК до строительной площадки. Расстояние между объектами составляет 10,17 км. Принимаем согласно варианту Камаз с грузоподъемностью 10 т.

Всего необходимо 11400 кирпичей (25,5 т.).

Сменная эксплуатационная производительность (

) грузового автомобиля:

Коэффициент использования грузоподъемности

использование эффективно.

Требуемое количество автотранспортных средств на маршруте:

Время выполнения перевозок:

Время движения АТС за один оборотный рейс на маршруте


Общий пробег:

,

Количество ездок на маршруте:


Задание 2. Разработка организационно-технологической схемы возведения фундамента

2.1 Определить энергию удара, подобрать сваебойный агрегат и показать на рисунке схему проходки для погружения свай длиной 16м, сечением 40см, несущей способностью 40тн для свайного поля с расположением свай в 2ряда

Выбор способа, типа машин (копров) и оборудования для сваебойных работ

Выбор способа погружения свай зависит от грунтовых условий, конструкции, длины и массы сваи.

Наиболее распространенным способом является ударное погружение свай с помощью падающих механических и дизель-молотов, реже паровоздушных молотов. Ударный способ рационален для погружения цельных и составных железобетонных свай сечением 0,2х0,2 - 0,4х0,4 м, длиной до 30 м в любых грунтах.

Вибропогружение эффективно при наличии рыхлых песчаных грунтов и супесчаных водонасыщенных грунтов; вибровдавливание рекомендуется при погружении в мягкопластичные, текучепластичные и текучие суглинки и глины; применение вдавливания статической нагрузкой ограничивается глинистыми грунтами текучей консистенции. В ряде случаев применяют свайные погружатели комбинированного действия, например вибромолоты, в которых используется ударная сила молота и действие вибропогружателя, или установки статического вдавливания в сочетании с вибропогружателями.

Широко распространенная ударно-вибрационная технология погружения имеет ряд недостатков: необходимость усиленного армирования свай; значительное влияние ударных и вибрационных нагрузок на рабочие органы машины, близкостоящие здания; нарушение структуры грунта и неравномерность осадок фундаментов; высокий уровень шума и вибраций при забивке свай.