В триплекс объединяют ударопрочные (закаленные и химически упрочненные методом травления), низкоэмиссионные, художественные (рельефные, узорчатые) и другие стекла. Кроме того, на рынке представлены ламинированные изделия, в состав которых входит особая акустическая пленка: Pilkington Optilamтм Phon, Stratophone (Glaverbel), SGG Stadip Silence® (Saint-Gobian). Благодаря высокой звукоизоляционной способности такие стекла отлично защищают здание от низкочастотного уличного шума. К тому же в отличие от монолитного стекла большой толщины (или сочетания стекол разной толщины), традиционно используемого в звукоизоляционных целях, акустическая ламинированная продукция не имеет критической частоты (т.е. частоты, при которой резко снижается уровень звукоизоляции). Помимо триплексов производят и комплексы из пяти (пентаплексы) и более (полиплексы) слоев. Последние обладают исключительной прочностью. Достаточно сказать, что малериал толщиной 6 см является пуленепробиваемым и способен отразить выстрел в упор из боевой винтовки. В многослойную композицию включают даже высокопрочный поликарбонат. Особая тема – безопасный стеклопакет. Долгие годы в таких изделиях с наружной стороны устанавливались закаленные стекла, а с внутренней – триплекс. Появление закаленных продуктов с селективным покрытием изменило ситуацию. Специалисты компании Glaverbel предложили «перевернуть» стеклопакет. Очевидно, что триплекс более уместен снаружи. Во-первых, многослойное стекло не осыпается при разрушении, что особенно важно для высотных зданий. Осколки закаленного стекла при падении с высоты представляют реальную опасность для прохожих. Во-вторых, высококачественный триплекс не имеет оптических искажений, свойственных закаленному стеклу (угловое смещение вторичного изображения, возникающее в силу напряжения поверхностных слоев). Между тем самые незначительные дефекты (до 1%) стеклоизделий могут нарушить визуальную плоскость прозрачных или зеркальных фасадов.
Комментарий специалиста
Вячеслав Коломиец, генеральный директор компании TGE
Философская идея изменения характеристик остекления в зависимости от окружающей среды стара, как стекольный мир. В наши дни выпускается множество специальных стекол: тонированные, солнцеотражающие, низкоэмиссионные и так далее. Однако все они обладают заданными при производстве абсолютно статичными свойствами. Между тем условия внутри и снаружи здания постоянно меняются. Скажем, естественное освещение зависит от времени суток, сезона, погоды. Обитателям застекольного пространства подчас требуется приватная и комфортная атмосфера.
Наша компания предлагает электрохромные стекла, прозрачность которых можно регулировать одним нажатием кнопки переносного пульта. Под воздействием электрического ток (напряжение 2 В) активная полимерная прослойка триплекса приобретает насыщенную окраску. При отключении электричества полимерная композиция возвращается в исходное прозрачное состояние. Наша технология позволяет производить электрохромное стекло различного цвета (синее, бронзовое, серое).
Продукт официально признан в России и в мире (имеет российский и международный патенты). Технология полностью подготовлена для внедрения в промышленное производство. На нашем опытном предприятии пока выпускается несколько сотен квадратных метров стекла в месяц (различных оттенков синего цвета). Вопрос дальнейшего наращивания объемов производства находится на стадии проработки.
Огнеборческая миссия.
Термическая стойкость – не самое сильное свойство листового стекла. При резком повышении температуры материал покрывается трещинами, мутнеет, оплавляется и, наконец, полностью разрушается. Словом, при обеспечении пожарной безопасности зданий на «помощь» остекления рассчитывать не приходится. Между тем современная архитектура крайне нуждается в стекле, способном выполнять огнезащитную функцию. Огнестойкие стеклянные системы жизненно необходимы зданиям с большой площадью остекления, а также строениям, эксплуатируемым в условиях плотной застройки.
Пожароустойчивые стекла последнего поколения Pyrobel (Glaverbel), Pilkington Pyrodurтм, Pilkington Pyrostopтм, Fireswiss (Euroglas) имеют многослойную структуру. Зазоры между стеклами заполнены особым гелиевым составом. При критическом повышении температуры промежуточные слои расширяются и переходят в твердое, пористое состояние. В результате элемент остекления превращается в жесткую не прозрачную огнезащитную конструкцию.
Комментарий специалиста
Виктор Франк, руководитель отдела продаж огнестойких стекол компании Pilkington
Огнестойкость – способность изделия, конструкции или элемента сооружения препятствовать распространению огня, обеспечивая при пожаре безопасность путей эвакуации. Огнестойкость раздельной конструкции как комплексной системы, состоящей из стекла и профильных элементов, обеспечивается соответствием этих элементов, а также способов крепления стекла и конструкции в целом.
Существует два типа разделительных конструкций: E и EI(W). От стеклянных конструкций класса E требуется герметичность по отношению к пламени и горячим газам в течение определенного времени. Для класса E не установлены ограничения роста температуры поверхности стекла на противоположной по отношению к огню стороне. Стекло пропускает тепловое излучение (жар). Поэтому при использовании конструкций класса E необходимо обращать внимание на то, чтобы эвакуационные проходы и легковоспламеняющиеся материалы находились на достаточном расстоянии от стекла.
От разделительных стеклянных конструкций класса EI требуется герметичность (E) по отношению к пламени и горячим газам, а также способность в значительной степени препятствовать (I) прохождению теплового излучения на противоположную по отношению к огню сторону в течение установленного времени. Максимальный разрешенный подъем температуры не может превышать 3,5 кВт/кв.м. Огнестойкие стекла класса EI предотвращают нагрев и вызываемое им воспламенение материалов, находящихся в непосредственной близости к стеклу, и гарантируют людям безопасность вблизи стекла при выходе из здания. Наиболее типичными местами, где применяются стекла класса EI, служат остекления лестниц эвакуационных проходов.
Технология чистоты.
Плачевное состояние городской атмосферы, насыщенной выхлопными газами и копотью, негативно сказывается на состоянии светопрозрачных фасадов. Стеклянная поверхность быстро покрывается слоем трудно смываемой «жирной» грязи. В результате здание приобретает не опрятный и отталкивающий вид. Между тем отмыть небоскреб – дело не простое и не дешевое ($ 1,5-3/кв.м и более в зависимости от высоты здания). К тому же эта работа малоэффективна. Через некоторое время «умытые» фасады утрачивают чистоту. Не так давно компания Pilkington выпустила на рынок уникальный материал – самоочищающееся стекло Pilkington Activтм. Эффект самоочищения достигается за счет специального пиролитического покрытия двойного действия (в основе химического состава – диоксид кремния). Во-первых, активная пленка (толщиной всего 15 нанометров) выступает в роли катализатора реакции разложения «органической» грязи под воздействием ультрафиолетового излучения. Во-вторых, покрытие придает поверхности стекла гидрофильные свойства. Продукты распада, а также неорганические загрязнения (дорожная пыль и т.д.) легко смываются дождевой водой. После высыхания на стекле не остается подтеков, разводов и пятен.
Стеклянный дом: миф или реальность?
Какие метаморфозы ожидают стекло в будущем?
Очевидно, что материал постепенно приобретает конструкционный статус. Давно перестали быть диковинкой стеклянные полы, лестницы, демонстрационные площадки. В новом здании аэропорта в Риге светопрозрачная крыша опирается на стеклянные несущие балки. Комбинируя стекла разного типа и разной толщины, можно создавать небывалые строительные конструкции. В развитии стекла все явственнее проявляют себя нанотехнологии, позволяющие придать ему специфические эксплуатационные и технические характеристики, а также экстраординарные эстетические качества. Известно, что стекло – аморфный материал, не имеющий жесткой кристаллической решетки. Молекулы оксида кремния расположены в случайном порядке, а соединения натрия и калия объединены в комплексы. Один из способов упрочнения стекла – изменение структуры за счет введения высокопрочных синтетических фибр (нанотрубок), способных создать стабильные связи между элементами.
От листового стекла также требуются прочностные «подвиги». На системы остекления воздействуют большие статические и динамические нагрузки. В современных условиях остро стоит вопрос о производстве стекла со стабильными, заведомо известными прочностными характеристиками, которые можно включать в нормативные документы, использовать в расчетах. Встанет ли стекло в один ряд со сталью и железобетоном, покажет время.