Смекни!
smekni.com

Железобетонные конструкции (стр. 3 из 6)

; (44)

Ws – момент сопротивления сечения по растянутой арматуре:

; (45)

.

Т.к. усилие обжатия Р приложено в центре тяжести площади нижней напрягаемой арматуры, esn=0.

;

Приращение напряжений в арматуре от действия полной нагрузки:

Вычисляю по формуле:

ширина раскрытия трещин от непродолжительного действия полной нагрузки:

, (46)

где

; (47)

;

.

ширина раскрытия трещин от непродолжительного действия постоянной и длительной нагрузок:

ширина раскрытия трещин от постоянной и длительной нагрузок:

Непродолжительная ширина раскрытия трещин:

; (48)

Продолжительная ширина раскрытия трещин:

Расчет прогиба плиты

Прогиб определяю от постоянной и длительной нагрузок, предельный прогиб f=3 см. вычисляю параметры, необходимые для определения прогиба плиты с учетом трещин в растянутой зоне. Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок М=50,8кНм; суммарная предельная сила равна усилию предварительного обжатия с учетом всех потерь и при γsp=1, Ntot=P2=266кН; эксцентриситет es, tot=M/Ntot=5080000/266000=19 см; коэффициент φl=0,8 – при длительном действии нагрузок; по формуле:

; (49)

принимаю φm=1;

коэффициент, характеризующий неравномерность деформации растянутой арматуры на участке между трещинами, по формуле:

; (50)

Вычисляюкривизну оси при изгибе по формуле:

; (51)

ψb=0,9; λb=0,15 – при длительном действии нагрузок; Ab=216*3=648см2.

Вычисляю прогиб по формуле:


; (52)

Определение усилий в ригеле поперечной рамы

Расчетная схема рамы и нагрузки

Поперечная многоэтажная рама имеет регулярную расчетную схему с равными пролетами ригелей и равными длинами стоек (высотами этажей). Сечения ригелей и стоек по этажам также приняты постоянными. Такая многоэтажная рама расчленяется для расчета на вертикальную нагрузку на одноэтажные рамы с нулевыми точками моментов – шарнирами, расположенными по концам стоек, – в середине длины стоек всех этажей, кроме первого.

Нагрузка на ригель от многопустотных плит считается равномерно распределенной, от ребристых плит при числе ребер в пролете ригеля более четырех – также равномерно распределенной. Ширина грузовой полосы на ригель равна шагу поперечных рам, в примере – 6 м. Подсчет нагрузок на 1 м2 перекрытия приведен в таблице 1.3.1.

Вычисляю постоянную нагрузку на 1 м длины ригеля.

Постоянная: от перекрытия с учетом коэффициента надежности по назначению здания γn=0,95:

От веса ригеля сечением 0,25х0,55 (ρ=2500 кг/см3) с учетом коэффициентов надежности γf=1,1 и γn=0,95:

Итого:

Временная с учетом γn=0,95:

в том числе длительная:

и кратковременная:

Полная нагрузка:

Вычисление изгибающих моментов в расчетных сечениях ригеля

Опорные моменты вычисляю для ригелей, соединенных с колоннами на средних и крайних опорах жестко, по формуле:

Таблица 1.5.1 – Опорные моменты ригеля при различных схемах загружения

Схема загружения Опорные моменты, кНм
М12 М21 М23 М32
-0,035*27,4**6,6*6,6=-42 -0,098*27,4**6,6*6,6=-117 -0,09*27,4*6,6*6,6=-107 -107
-0,044*33,4**6,6*6,6=-64 -0,063*33,4**6,6*6,6=-92 -0,062*33,4**6,6*6,6=-39 -39
0,009*33,4**6,6*6,6=2 -0,035*33,4**6,6*6,6=-51 -0,062*33,4**6,6*6,6=-90 -90
-0,034*33,4**6,6*6,6=-49 -0,114*33,4**6,6*6,6=-166 -0,103*33,4**6,6*6,6=-150 -0,047*33,4**6,6*6,6=-68
1+2 -106 -209 -146 -146
1+3 -40 -168 -197 197
1+4 -91 -283 -257 -175

Таблица 1.5.2 – Ординаты моментов для свободнолежащей балки

Схема загружения х хпри l=6,6 м l-x l-xпри l=6,6 м Мх=qx (l-x)/2,кНм Mx=(q+v)*x*(l-x)/2,кНм
00,2l0,4l0,5l0,6l0,8ll 01,322,643,33,965,286,6 l0,8l0,6l0,5l0,4l0,2l0 6,65,283,963,32,641,320 095,48143,23149,19143,2395,480 0211,88317,81331,06317,81211,880

Таблица 1.5.3 – Определение пролетных моментов в неразрезном ригеле

Схема загружения,опорные моменты, кНм х,м х/l (l-x)/l Ординаты изгибающих моментов в крайнем (среднем) пролете, кНм
Мх М12(23)*(l-x)/l M21(32)*x/l M*
1+2М12=-106М21=-209 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 0211,88317,81331,06317,81211,880 -106-84,8-63,6-53-42,4-21,20 0-41,8-83,6-104,5-125,4-167,2-209 -10685,28170,61173,56150,0123,48-209
1+3М12=-40М21 =-168 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 095,48143,23149,19143,2395,480 -40-32-24-20-16-80 0-33,6-67,2-84-100,8-134,4-168 -4029,8852,0345,1926,43-46,92-168
1+4М12=-91М21 =-283 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 0211,88317,81331,06317,81211,880 -91-72,8-54,6-45,5-36,4-18,20 0-56,6-113,2-141,5-169,8-226,4-283 -9182,48150,01144,06111,61-32,72-283
1+2М23=-146М32 =-146 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 095,48143,23149,19143,2395,480 -146-116,8-87,6-73-58,4-29,20 0-29,2-58,4-73-87,6-116,8-146 -146-50,52-2,773,19-2,77-50,52-146
1+3М23=-197М32 =-197 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 0211,88317,81331,06317,81211,880 -197-157,6-118,2-98,5-78,8-39,40 0-39,4-78,8-98,5-118,2-157,6-197 -19714,88120,81134,06120,8114,88-197
1+4М23=-257М32 =-175 01,322,643,33,965,286,6 00,20,40,50,60,81 10,80,60,50,40,20 0211,88317,81331,06317,81211,880 -257-205,6-154,2-128,5-102,8-51,40 0-35-70-87,5-105-140-175 -257-28,7293,61115,06110,0120,48-175

Перераспределение моментов под влиянием образования пластических шарниров в ригеле

Практический расчет заключается в уменьшении примерно на 30% опорных моментов ригеля М21 и М23 по схемам загружения 1+4; при этом намечается образование пластических шарниров на опоре.

К эпюре моментов схем загружения 1+4 добавляю выравнивающую эпюру моментов (приложение 1-б) так, чтобы уравнялись опорные моменты М2123 и были обеспечены удобства армирования опорного узла. Ординаты выравнивающей эпюры моментов:


Опорные моменты ригеля по грани колонны

На средней опоре при схеме загружения 1+4 опорный момент ригеля по грани колонны не всегда оказывается расчетным. При большой временной нагрузке и относительно малой погонной жесткости колонн он может оказаться расчетным при схемах загружения 1+2 или 1+3, то есть при больших отрицательных моментах в пролете.

Опорный момент ригеля по грани средней колонны справа М(23),1:

1) по схеме загружения 1+4 и выравненной эпюре моментов:

; (56)