Смекни!
smekni.com

Устройства очистки воздуха от загрязняющих веществ (стр. 5 из 8)

Достоинство трубы Вентури с подачей воды к горловине состоит в возможности укрупнения пылевых частиц до размера 10 мкм в результате соударений их с каплями жидкости, чем и объясняется высокая степень очистки, достигающая 99,9%.

Капли жидкости после трубы Вентури могут улавливаться в пылеуловителе мокрого типа (рис. XII 1.13,6) или в мощных электрических фильтрах. Агрегаты пылеуловителя Вентури могут содержать одну или несколько труб. Укрупнение частиц пыли в трубе Вентури в результате коагуляции происходит под воздействием сил инерции движения частиц, броуновского движения, турбулентной и поляризационной диффузии, электростатических сил и в большой степени под влиянием конденсации водяных паров, возникающей при адиабатическом расширении газа.

От скорости движения газа в большой степени зависит также эффективность очистки. Увеличение диаметра капель с увеличением удельного расхода воды приводит к увеличению сопротивления труб Вентури и повышению эффективности их работы. Расход воды в больших трубах может достигать 0,5—I кг/м3.

При всех своих достоинствах трубы Вентури имеют существенный недостаток — большое аэродинамическое сопротивление пылегазового тракта—10 000 Па (1000 кгс/м3 и больше), а следовательно, и большой расход энергии.

Пылеуловители Вентури используют главным образом для очистки газов на предприятиях металлургической, химической и других отраслей промышленности, а также для улавливания пыли из вентиляционных выбросов.

Пенные пылеуловители. В качестве пенных пылеуловителей используют пенные газоочистители ПГС-ЛТИ и ПГП-ЛТИ. Пенные газоочистители применяют для очистки от пыли нейтральных газов с температурой до 100° С, которые не образуют в процессе промывки водой кристаллизующихся солей, забивающих отверстия решеток или отлагающихся на поверхностях аппарата. Очищаемые газы должны иметь плотность не менее 0,6 кг/м3 и высокую начальную запыленность. Степень очистки при размерах частиц 15—20 мкм составляет 96—90%, при размерах частиц 3—5 мкм падает до 80%.

Мокрые пылеуловители следует устанавливать в отапливаемых помещениях во избежание выхода их из строя в зимнее время года. Необходимо периодически проверять соответствие расхода и распределения воды по отдельным насадкам или форсункам по паспортным данным.

4.3 Тканевые пылеуловители

При применении тканевых пылеуловителей степень очистки воздуха может составлять 99% и более. При пропускании запыленного воздуха через ткань содержащаяся в нем пыль задерживается в порах фильтрующего материала или на слое пыли, накапливающейся на его поверхности.

Тканевые пылеуловители по форме фильтрующей поверхности выполняют рукавными и рамочными. В качестве фильтрующего материала применяют хлопчатобумажные ткани, фильтр-сукно, капрон, шерсть, нитрон, лавсан, стеклоткань и различные сетки.

Тканевые рукавные пылеуловители получили большое распространение для улавливания тонких и грубых фракций пыли.

В Приложение И показана конструкция рукавного пылеуловителя — фильтра РФГ-УМС-4, который служит для улавливания пыли из технологических газов и вентиляционного воздуха. Изготовляются рукавные пылеуловители одинарными и сдвоенными. Одинарные рукавные пылеуловители состоят из четырех, шести, восьми или десяти секций, а сдвоенные — из удвоенного числа секций. В каждой секции в шахматном порядке установлено по 14 матерчатых рукавов в три ряда. Площадь фильтрующей поверхности каждого рукава составляет 2 м2, а одной секции — 28 м2.

Во избежание конденсации влаги на ткани и стенках рукавов при установке пылеуловителей следует учитывать температуру и влажность очищаемого воздуха. Рукавный пылеуловитель РФГ состоит из корпуса 1, бункера 2, газораспределительного короба 3, фильтровальных рукавов 4, крышки с механизмом встряхивания рукавов и переключения дроссель-клапанов 5, коллектора очищенного воздуха 6, вентилятора для продувки рукавов 7, шпека для выгрузки пыли 8 и шлюзового затвора 9.

Очищаемый воздух подводится воздуховодом к входному фланцу газораспределительного короба бункера (с передней или задней торцовой стороны пылеуловителя) и опускается под влиянием направляющей перегородки в нижнюю часть бункера, где поворачивается на 180° и поступает в рукава. Проходя через ткань рукавов, воздух очищается от пыли, которая оседает на внутренней поверхности рукавов. Очищенный воздух поступает в межрукавное пространство секций и далее в предназначенный для него коллектор.

Регенерация ткани осуществляется одновременным встряхиванием рукавов и их обратной продувкой. В этом случае регенерируемая секция отключается от коллектора очищенного воздуха.

Каждая половина сдвоенного пылеуловителя имеет свой механизм встряхивания и переключения клапанов. Встряхивание и переключение клапанов на продувку осуществляется электродвигателем через редуктор. Продолжительность встряхивания одной секции составляет 1 мин при длительности процесса фильтрования 9 мин, а весь рабочий цикл составляет 10 мин.

Для продувки рукавов используется вентилятор, установленный на одном валу с электродвигателем. Одновременно продувают только одну секцию. Продувочный воздух поступает в секцию из коллектора продувочного воздуха, проходит через ткань рукавов в направлении, обратном потоку очищаемого воздуха, и поступает во внутреннюю полость рукавов. В процессе регенерации ткани пыль с поверхности рукавов сбрасывается в бункер, а из последнего транспортируется шнеком к шлюзовому затвору, через который и удаляется.

Допускаемая нагрузка запыленного воздуха на 1 м2 фильтрующего материала и общая пропускная способность пылеуловителя зависят от дисперсного состава пыли и первоначальной запыленности воздуха и могут быть определены по данным ГПИ Сантехпроекта.

Из других тканевых пылеуловителей в настоящее время применяют фильтры рукавные всасывающие ФВ.К-30. ФВК-60, ФВК-90, ФВ-30, ФВ-45, ФВ-60, ФВ-90; фильтры рукавные ФР-10, ФРМ1-6. ФРМ1-8, ФРМЫО и т. д.

4.4 Электрические пылеуловители

Эффективность электрического пылеуловителя зависит от свойств очищаемого газа (воздуха) и улавливаемой пыли, загрязнения пылью осадительных и коронирующих электродов, электрических параметров пылеуловителя, скорости движения газа и равномерности его распределения в электрическом поле.

В электропылеуловителях содержащиеся в воздухе частицы пыли приобретают заряд и осаждаются на осадительных электродах. Эти процессы происходят в электрическом поле, образованном двумя электродами с разноименными зарядами. Один из электродов является одновременно и осадителем.

Приобретение частицами пыли электрического заряда в электропылеуловителе вызвано как их бомбардировкой ионами под действием электрического поля — частицы пыли размером более 1 мкм, так и тем, что с ними приходят в соприкосновение ионы (тепловое — броуновское движение молекул) — частицы пыли размером менее 1 мкм.

Предельный заряд частиц размером более 1 мкм пропорционален напряженности электрического поля и квадрату радиуса частицы.

Каждая секция электропылеуловителя имеет электрическое поле высотой 8,5 м с поперечным сечением 2,8X4,3 м. Скорость вертикального перемещения запыленного воздуха составляет 1,75—2 м/с. Пропускная способность одной секции 75 000—100 000 м3/ч очищаемого воздуха.

Осадительные электроды, выполненные в виде металлических пластин 1, опираются на балки корпуса. Система коронирующих электродов представляет собой раму из труб с натянутыми между ними горизонтальными проводами 2 из проволоки сечением 4X4 мм. Тяги, на которых подвешены рамы коронирующих электродов, проходят через изоляторы 3.

Для удаления пыли с осадительных и коронирующих электродов предусмотрены механизмы встряхивания. При встряхивании электродов пыль осыпается по пылевым желобам в сборные бункера 4, откуда и удаляется.

Расход электроэнергии данным пылеуловителем 0,2 кВт на 1000 м3/ч очищаемого воздуха. Сопротивление 98 Па (10 кгс/м2). При комбинации пылеуловителя ДВП с батарейными циклонами эффективность его достигает 98%.

4.5 Фильтры

Воздушные фильтры могут быть разделены на три класса, из которых фильтры I класса задерживают пылевые частицы всех размеров (при низшем пределе эффективности очистки атмосферного воздуха 99%), фильтры II класса — частицы размером более 1 мкм (при эффективности 85%), а фильтры III класса — частицы размером от 10 до 50 мкм (при эффективности 60%).

Фильтры I класса (волокнистые) задерживают пылевые частицы всех размеров в результате диффузии и соприкасания, а также крупные частицы в результате их зацепления волокнами, заполняющими фильтр.

В фильтрах II класса (волокнистых с более толстыми волокнами) частицы мельче 1 мкм задерживаются неполностью. Более крупные частицы эффективно задерживаются в результате механического зацепления и инерции. Задержание частиц крупнее 4—5 мкм в сухих фильтрах этого класса малоэффективно.

В фильтрах III класса, заполненных более толстыми волокнами, проволокой, перфорированными и зигзагообразными листами и т.п., в основном действует инерционный эффект. Для уменьшения пор и каналов в заполнении фильтров последние смачиваются.

Эффективность и сопротивление фильтров внутри каждого из классов неодинаковы.

4.5.1 Сухие пористые фильтры

Рулонный волокнистый фильтр ФРУ выполнен в виде коробчатого каркаса , через сечение которого протекает очищаемый воздух. Каркас в верхней и нижней частях имеет катушки-барабаны , На верхнюю катушку наматывается в виде рулона фильтрующий материал, полотнище которого пропускается через живое сечение фильтра и закрепляется на нижней катушке. Воздух, проходя через полотнище, оставляет в нем пыль.